19. Bibliographie¶
La présente bibliographie est constituée d’un choix explicite de références à visée didactique, souvent introductives mais pas uniquement, et dans la mesure du possible publiquement accessibles. Ces références accompagnent la prise en main comme l’usage avancé des méthodes disponibles dans le module, sans néanmoins d’intention de constituer une bibliographie exhaustive.
- Argaud09
Argaud J.-P., Bouriquet B., Hunt J., Data Assimilation from Operational and Industrial Applications to Complex Systems, Mathematics Today, pp.150-152, October 2009
- Asch16
Asch M., Bocquet M., Nodet M., Data Assimilation - Methods, Algorithms and Applications, SIAM, 2016
- Barrault04
Barrault M., Maday Y., Nguyen N. C., Patera A. T., An “empirical interpolation” method: application to efficient reduced-basis discretization of partial differential equations, Comptes Rendus Mathématique, 339(9), pp.667–672, 2004
- Bishop01
Bishop C. H., Etherton B. J., Majumdar S. J., Adaptive sampling with the ensemble transform Kalman filter. Part I: theoretical aspects, Monthly Weather Review, 129, pp.420–436, 2001
- Bocquet04
Bocquet M., Introduction aux principes et méthodes de l’assimilation de données en géophysique, Lecture Notes, 2014
- Bouttier99
Bouttier B., Courtier P., Data assimilation concepts and methods, Meteorological Training Course Lecture Series, ECMWF, 1999
- Buchinsky98
Buchinsky M., Recent Advances in Quantile Regression Models: A Practical Guidline for Empirical Research, Journal of Human Resources, 33(1), pp.88-126, 1998
- Burgers98
Burgers G., Van Leuween P. J., Evensen G., Analysis scheme in the Ensemble Kalman Filter, Monthly Weather Review, 126(6), pp.1719–1724, 1998
- Byrd95
Byrd R. H., Lu P., Nocedal J., A Limited Memory Algorithm for Bound Constrained Optimization, SIAM Journal on Scientific and Statistical Computing, 16(5), pp.1190-1208, 1995
- Cade03
Cade B. S., Noon B. R., A Gentle Introduction to Quantile Regression for Ecologists, Frontiers in Ecology and the Environment, 1(8), pp.412-420, 2003
- Chakraborty08
Chakraborty U.K., Advances in differential evolution, Studies in computational intelligence, Vol.143, Springer, 2008
- Chaturantabut10
Chaturantabut S., Sorensen D.C., Nonlinear model reduction via discrete empirical interpolation, SIMA Journal of Scientific Computing, 32(5), pp.2737-2764, 2010
- Cohn98
Cohn S. E., Da Silva A., Guo J., Sienkiewicz M., Lamich D., Assessing the effects of data selection with the DAO Physical-space Statistical Analysis System, Monthly Weather Review, 126, pp.2913–2926, 1998
- Courtier94
Courtier P., Thépaut J.-N., Hollingsworth A., A strategy for operational implementation of 4D-Var, using an incremental approach, Quarterly Journal of the Royal Meteorological Society, 120(519), pp.1367–1387, 1994
- Courtier97
Courtier P., Dual formulation of four-dimensional variational assimilation, Quarterly Journal of the Royal Meteorological Society, 123(544), pp.2249-2261, 1997
- Das11
Das S., Suganthan P. N., Differential Evolution: A Survey of the State-of-the-art, IEEE Transactions on Evolutionary Computation, 15(1), pp.4-31, 2011
- Das16
Das S., Mullick S. S., Suganthan P. N., Recent Advances in Differential Evolution - An Updated Survey, Swarm and Evolutionary Computation, 27, pp.1-30, 2016
- Dautray85
Dautray R., Lions J.-L., et al., Analyse mathématique et calcul numérique pour les sciences et les techniques, Tome 1 à 9, Masson, 1985-1988
- Evensen94
Evensen G., Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics, Journal of Geophysical Research, 99(C5), pp.10143–10162, 1994
- Evensen03
Evensen G., The Ensemble Kalman Filter: theoretical formulation and practical implementation, Seminar on Recent developments in data assimilation for atmosphere and ocean, ECMWF, 8 to 12 September 2003
- GilBellosta15
Gil Bellosta C. J., rPython: Package Allowing R to Call Python, CRAN, 2015, https://cran.r-project.org/web/packages/rPython/ and http://rpython.r-forge.r-project.org/
- Glover89
Glover F., Tabu Search-Part I, ORSA Journal on Computing, 1(2), pp.190-206, 1989
- Glover90
Glover F., Tabu Search-Part II, ORSA Journal on Computing, 2(1), pp.4-32, 1990
- Gnuplot
Gnuplot - Portable command-line driven graphing utility, http://www.gnuplot.info/
- Gnuplot.py
Gnuplot.py - A pipe-based interface to the gnuplot plotting program, http://gnuplot-py.sourceforge.net
- Gong18
Gong H., Data assimilation with reduced basis and noisy measurement: Applications to nuclear reactor cores, PhD Thesis, Sorbonne Université (France), 2018
- Hamill00
Hamill T. M., Snyder C., A Hybrid Ensemble Kalman Filter-3D Variational Analysis Scheme, Monthly Weather Review, 128(8), pp.2905-2919, 2000
- Ide97
Ide K., Courtier P., Ghil M., Lorenc A. C., Unified notation for data assimilation: operational, sequential and variational, Journal of the Meteorological Society of Japan, 75(1B), pp.181-189, 1997
- Jazwinski70
Jazwinski A. H., Stochastic Processes and Filtering Theory, Academic Press, 1970
- Johnson08
Johnson S. G., The NLopt nonlinear-optimization package, http://github.com/stevengj/nlopt
- Julier95
Julier S., Uhlmann J., Durrant-Whyte H., A new approach for filtering nonlinear systems, in: Proceedings of the 1995 American Control Conference, IEEE, 1995
- Julier00
Julier S., Uhlmann J., Durrant-Whyte H., A new method for the nonlinear transformation of means and covariances in filters and estimators, IEEE Trans. Automat. Control., 45, pp.477–482, 2000
- Julier07
Julier S., Laviola J., On Kalman filtering with nonlinear equality constraints, IEEE Trans. Signal Process., 55(6), pp.2774-2784, 2007
- Kalnay03
Kalnay E., Atmospheric Modeling, Data Assimilation and Predictability, Cambridge University Press, 2003
- Koenker00
Koenker R., Hallock K. F., Quantile Regression: an Introduction, 2000, http://www.econ.uiuc.edu/~roger/research/intro/intro.html
- Koenker01
Koenker R., Hallock K. F., Quantile Regression, Journal of Economic Perspectives, 15(4), pp.143-156, 2001
- LeDimet86
Le Dimet F.-X., Talagrand 0., Variational algorithms for analysis and assimilation of meteorological observations, Tellus, 38A, pp.97-110, 1986
- Lions68
Lions J.-L., Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles, Dunod, 1968
- Lorenc86
Lorenc A. C., Analysis methods for numerical weather prediction, Quarterly Journal of the Royal Meteorological Society, 112(474), pp.1177-1194, 1986
- Lorenc88
Lorenc A. C., Optimal nonlinear objective analysis, Quarterly Journal of the Royal Meteorological Society, 114(479), pp.205–240, 1988
- Morales11
Morales J. L., Nocedal J., L-BFGS-B: Remark on Algorithm 778: L-BFGS-B, FORTRAN routines for large scale bound constrained optimization, ACM Transactions on Mathematical Software, 38(1), 2011
- Nelder65
Nelder J. A., Mead R., A simplex method for function minimization, The Computer Journal, 7, pp.308-313, 1965
- NumPy20
Harris C. R. et al., Array programming with NumPy, Nature 585, pp.357–362, 2020, https://numpy.org/
- Papakonstantinou22
Papakonstantinou K. G., Amir M., Warn G. P., A Scaled Spherical Simplex Filter (S3F) with a decreased n+2 sigma points set size and equivalent 2n+1 Unscented Kalman Filter (UKF) accuracy, Mechanical Systems and Signal Processing, 163, 107433, 2022
- Powell64
Powell M. J. D., An efficient method for finding the minimum of a function of several variables without calculating derivatives, Computer Journal, 7(2), pp.155-162, 1964
- Powell94
Powell M. J. D., A direct search optimization method that models the objective and constraint functions by linear interpolation, in Advances in Optimization and Numerical Analysis, eds. S. Gomez and J-P Hennart, Kluwer Academic (Dordrecht), pp. 51-67, 1994
- Powell98
Powell M. J. D., Direct search algorithms for optimization calculations, Acta Numerica 7, pp.287-336, 1998
- Powell04
Powell M. J. D., The NEWUOA software for unconstrained optimization without derivatives, Proc. 40th Workshop on Large Scale Nonlinear Optimization, Erice, Italy, 2004
- Powell07
Powell M. J. D., A view of algorithms for optimization without derivatives, Cambridge University Technical Report DAMTP 2007/NA03, 2007
- Powell09
Powell M. J. D., The BOBYQA algorithm for bound constrained optimization without derivatives, Cambridge University Technical Report DAMTP NA2009/06, 2009
- Price05
Price K.V., Storn R., Lampinen J., Differential evolution: a practical approach to global optimization, Springer, 2005
- Python
Python programming language, http://www.python.org/
- Quarteroni16
Quarteroni A., Manzoni A., Negri F., Reduced Basis Methods for Partial Differential Equations - An introduction, Unitext vol.92, Springer, 2016
- R
The R Project for Statistical Computing, http://www.r-project.org/
- Rowan90
Rowan T., Functional Stability Analysis of Numerical Algorithms, Ph.D. thesis, Department of Computer Sciences, University of Texas at Austin, 1990
- Salome
SALOME The Open Source Integration Platform for Numerical Simulation, http://www.salome-platform.org/
- SalomeMeca
Salome_Meca et Code_Aster, Analyse des Structures et Thermomécanique pour les Etudes et la Recherche, http://www.code-aster.org/
- SciPy20
Virtanen P. et al., SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python, Nature Methods, 17(3), pp.261-272, 2020, https://scipy.org/
- Storn97
Storn R., Price, K., Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces, Journal of Global Optimization, 11(1), pp.341-359, 1997
- Tarantola87
Tarantola A., Inverse Problem: Theory Methods for Data Fitting and Parameter Estimation, Elsevier, 1987
- Talagrand97
Talagrand O., Assimilation of Observations, an Introduction, Journal of the Meteorological Society of Japan, 75(1B), pp.191-209, 1997
- Tikhonov77
Tikhonov A. N., Arsenin V. Y., Solution of Ill-posed Problems, Winston & Sons, 1977
- Wan00
Wan E. A., van der Merwe R., The Unscented Kalman Filter for Nonlinear Estimation, in: Adaptive Systems for Signal Processing, Communications, and Control Symposium, IEEE, 2000.
- Welch06
Welch G., Bishop G., An Introduction to the Kalman Filter, University of North Carolina at Chapel Hill, Department of Computer Science, TR 95-041, 2006, http://www.cs.unc.edu/~welch/media/pdf/kalman_intro.pdf
- WikipediaDA
Wikipedia, Data assimilation, http://en.wikipedia.org/wiki/Data_assimilation
- WikipediaKF
Wikipedia, Kalman Filter, https://en.wikipedia.org/wiki/Kalman_filter
- WikipediaEKF
Wikipedia, Extended Kalman Filter, https://en.wikipedia.org/wiki/Extended_Kalman_filter
- WikipediaEnKF
Wikipedia, Ensemble Kalman Filter, http://en.wikipedia.org/wiki/Ensemble_Kalman_filter
- WikipediaMO
Wikipedia, Mathematical optimization, https://en.wikipedia.org/wiki/Mathematical_optimization
- WikipediaND
Wikipedia, Nondimensionalization, https://en.wikipedia.org/wiki/Nondimensionalization
- WikipediaNM
Wikipedia, Nelder–Mead method, https://en.wikipedia.org/wiki/Nelder%E2%80%93Mead_method
- WikipediaPSO
Wikipedia, Particle Swarm Optimization, https://en.wikipedia.org/wiki/Particle_swarm_optimization
- WikipediaQR
Wikipedia, Quantile regression, https://en.wikipedia.org/wiki/Quantile_regression
- WikipediaTI
Wikipedia, Tikhonov regularization, https://en.wikipedia.org/wiki/Tikhonov_regularization
- WikipediaTS
Wikipedia, Tabu search, https://en.wikipedia.org/wiki/Tabu_search
- WikipediaUKF
Wikipedia, Unscented Kalman Filter, https://en.wikipedia.org/wiki/Unscented_Kalman_filter
- ZambranoBigiarini13
Zambrano-Bigiarini M., Clerc M., Rojas R., Standard Particle Swarm Optimisation 2011 at CEC-2013: A baseline for future PSO improvements, 2013 IEEE Congress on Evolutionary Computation, pp.2337-2344, 2013
- Zhu97
Zhu C., Byrd R. H., Nocedal J., L-BFGS-B: Algorithm 778: L-BFGS-B, FORTRAN routines for large scale bound constrained optimization, ACM Transactions on Mathematical Software, 23(4), pp.550-560, 1997
- Zupanski05
Zupanski M., Maximum likelihood ensemble filter: Theoretical aspects, Monthly Weather Review, 133(6), pp.1710–1726, 2005
Nota Bene : un lien vers la version française de chaque page Wikipédia se trouve dans le sous-menu « Languages ». Les deux versions sont complémentaires car, même si souvent le contenu en anglais est plus fourni, les informations disponibles dans chaque langue ne sont pas identiques.