13.2. Algorithme de calcul « 4DVAR »¶
Avertissement
Dans la présente version, cet algorithme ou certaines de ses variantes sont expérimentaux, et restent donc susceptibles de changements dans les prochaines versions.
Description¶
Cet algorithme réalise une estimation de l’état d’un système dynamique, par une
méthode de minimisation variationnelle de la fonctionnelle d’écart
classique en assimilation de données :
qui est usuellement désignée comme la fonctionnelle « 4D-Var » (voir par exemple [Talagrand97]). Les dénominations « 4D-Var », « 4D-VAR » et « 4DVAR » sont équivalentes. Il est bien adapté aux cas d’opérateurs d’observation et d’évolution non-linéaires, son domaine d’application est comparable aux algorithmes de filtrage de Kalman et en particulier l”Algorithme de calcul « ExtendedKalmanFilter » ou l”Algorithme de calcul « UnscentedKalmanFilter ».
Commandes requises et optionnelles¶
Les commandes générales requises, disponibles en édition dans l’interface graphique ou textuelle, sont les suivantes :
- Background
- Vecteur. La variable désigne le vecteur d’ébauche ou d’initialisation,
usuellement noté
. Sa valeur est définie comme un objet de type « Vector » ou « VectorSerie ». Sa disponibilité en sortie est conditionnée par le booléen « Stored » associé en entrée.
- BackgroundError
- Matrice. La variable désigne la matrice de covariance des erreurs
d’ébauche, usuellement notée
. Sa valeur est définie comme un objet de type « Matrix », de type « ScalarSparseMatrix », ou de type « DiagonalSparseMatrix », comme décrit en détail dans la section Conditions requises pour décrire des matrices de covariance. Sa disponibilité en sortie est conditionnée par le booléen « Stored » associé en entrée.
- EvolutionError
- Matrice. La variable désigne la matrice de covariance des erreurs a
priori d’évolution, usuellement notée
. Sa valeur est définie comme un objet de type « Matrix », de type « ScalarSparseMatrix », ou de type « DiagonalSparseMatrix », comme décrit en détail dans la section Conditions requises pour décrire des matrices de covariance. Sa disponibilité en sortie est conditionnée par le booléen « Stored » associé en entrée.
- EvolutionModel
- Opérateur. La variable désigne l’opérateur d’évolution du modèle,
usuellement noté
, qui décrit un pas élémentaire d’évolution dynamique ou itérative. Sa valeur est définie comme un objet de type « Function » ou de type « Matrix ». Dans le cas du type « Function », différentes formes fonctionnelles peuvent être utilisées, comme décrit dans la section Conditions requises pour les fonctions décrivant un opérateur. Si un contrôle
est inclus dans le modèle d’observation, l’opérateur doit être appliqué à une paire
.
- Observation
- Liste de vecteurs. La variable désigne le vecteur d’observation utilisé en
assimilation de données ou en optimisation, et usuellement noté
. Sa valeur est définie comme un objet de type « Vector » si c’est une unique observation (temporelle ou pas) ou « VectorSerie » si c’est une succession d’observations. Sa disponibilité en sortie est conditionnée par le booléen « Stored » associé en entrée.
- ObservationError
- Matrice. La variable désigne la matrice de covariance des erreurs a
priori d’ébauche, usuellement notée
. Cette matrice est définie comme un objet de type « Matrix », de type « ScalarSparseMatrix », ou de type « DiagonalSparseMatrix », comme décrit en détail dans la section Conditions requises pour décrire des matrices de covariance. Sa disponibilité en sortie est conditionnée par le booléen « Stored » associé en entrée.
- ObservationOperator
- Opérateur. La variable désigne l’opérateur d’observation, usuellement noté
, qui transforme les paramètres d’entrée
en résultats
qui sont à comparer aux observations
. Sa valeur est définie comme un objet de type « Function » ou de type « Matrix ». Dans le cas du type « Function », différentes formes fonctionnelles peuvent être utilisées, comme décrit dans la section Conditions requises pour les fonctions décrivant un opérateur. Si un contrôle
est inclus dans le modèle d’observation, l’opérateur doit être appliqué à une paire
.
Les commandes optionnelles générales, disponibles en édition dans l’interface graphique ou textuelle, sont indiquées dans la Liste des commandes et mots-clés pour un cas d’assimilation de données ou d’optimisation. De plus, les paramètres de la commande « AlgorithmParameters » permettent d’indiquer les options particulières, décrites ci-après, de l’algorithme. On se reportera à la Description des options d’un algorithme par « AlgorithmParameters » pour le bon usage de cette commande.
Les options sont les suivantes :
- Bounds
Liste de paires de valeurs réelles. Cette clé permet de définir des paires de bornes supérieure et inférieure pour chaque variable d’état optimisée. Les bornes doivent être données par une liste de liste de paires de bornes inférieure/supérieure pour chaque variable, avec une valeur
None
chaque fois qu’il n’y a pas de borne. Les bornes peuvent toujours être spécifiées, mais seuls les optimiseurs sous contraintes les prennent en compte.Exemple :
{"Bounds":[[2.,5.],[1.e-2,10.],[-30.,None],[None,None]]}
- ConstrainedBy
Nom prédéfini. Cette clé permet d’indiquer la méthode de prise en compte des contraintes de bornes. La seule disponible est « EstimateProjection », qui projette l’estimation de l’état courant sur les contraintes de bornes.
Exemple :
{"ConstrainedBy":"EstimateProjection"}
- CostDecrementTolerance
Valeur réelle. Cette clé indique une valeur limite, conduisant à arrêter le processus itératif d’optimisation lorsque la fonction coût décroît moins que cette tolérance au dernier pas. La valeur par défaut est de 1.e-7, et il est recommandé de l’adapter aux besoins pour des problèmes réels. On peut se reporter à la partie décrivant les manières de Contrôler la convergence pour des cas de calculs et algorithmes itératifs pour des recommandations plus détaillées.
Exemple :
{"CostDecrementTolerance":1.e-7}
- EstimationOf
Nom prédéfini. Cette clé permet de choisir le type d’estimation à réaliser. Cela peut être soit une estimation de l’état, avec la valeur « State », ou une estimation de paramètres, avec la valeur « Parameters ». Le choix par défaut est « State ».
Exemple :
{"EstimationOf":"State"}
- GradientNormTolerance
Valeur réelle. Cette clé indique une valeur limite, conduisant à arrêter le processus itératif d’optimisation lorsque la norme du gradient est en dessous de cette limite. C’est utilisé uniquement par les optimiseurs sans contraintes. Le défaut est 1.e-5 et il n’est pas recommandé de le changer.
Exemple :
{"GradientNormTolerance":1.e-5}
- InitializationPoint
Vecteur. La variable désigne un vecteur à utiliser comme l’état initial autour duquel démarre un algorithme itératif. Par défaut, cet état initial n’a pas besoin d’être fourni et il est égal à l’ébauche
. Sa valeur doit permettre de construire un vecteur de taille identique à l’ébauche. Dans le cas où il est fourni, il ne remplace l’ébauche que pour l’initialisation.
Exemple :
{"InitializationPoint":[1, 2, 3, 4, 5]}
- MaximumNumberOfIterations
Valeur entière. Cette clé indique le nombre maximum d’itérations internes possibles en optimisation itérative. Le défaut est 15000, qui est très similaire à une absence de limite sur les itérations. Il est ainsi recommandé d’adapter ce paramètre aux besoins pour des problèmes réels. Pour certains optimiseurs, le nombre de pas effectif d’arrêt peut être légèrement différent de la limite à cause d’exigences de contrôle interne de l’algorithme. On peut se reporter à la partie décrivant les manières de Contrôler la convergence pour des cas de calculs et algorithmes itératifs pour des recommandations plus détaillées.
Exemple :
{"MaximumNumberOfIterations":100}
- Minimizer
Nom prédéfini. Cette clé permet de changer le minimiseur pour l’optimiseur. Le choix par défaut est « LBFGSB », et les choix possibles sont « LBFGSB » (minimisation non linéaire sous contraintes, voir [Byrd95], [Morales11], [Zhu97]), « TNC » (minimisation non linéaire sous contraintes), « CG » (minimisation non linéaire sans contraintes), « BFGS » (minimisation non linéaire sans contraintes), « NCG » (minimisation de type gradient conjugué de Newton). Il est fortement conseillé de conserver la valeur par défaut.
Exemple :
{"Minimizer":"LBFGSB"}
- ProjectedGradientTolerance
Valeur réelle. Cette clé indique une valeur limite, conduisant à arrêter le processus itératif d’optimisation lorsque toutes les composantes du gradient projeté sont en-dessous de cette limite. C’est utilisé uniquement par les optimiseurs sous contraintes. Le défaut est -1, qui désigne le défaut interne de chaque optimiseur (usuellement 1.e-5), et il n’est pas recommandé de le changer.
Exemple :
{"ProjectedGradientTolerance":-1}
- StoreSupplementaryCalculations
Liste de noms. Cette liste indique les noms des variables supplémentaires, qui peuvent être disponibles au cours du déroulement ou à la fin de l’algorithme, si elles sont initialement demandées par l’utilisateur. Leur disponibilité implique, potentiellement, des calculs ou du stockage coûteux. La valeur par défaut est donc une liste vide, aucune de ces variables n’étant calculée et stockée par défaut (sauf les variables inconditionnelles). Les noms possibles pour les variables supplémentaires sont dans la liste suivante (la description détaillée de chaque variable nommée est donnée dans la suite de cette documentation par algorithme spécifique, dans la sous-partie « Informations et variables disponibles à la fin de l’algorithme ») : [ « Analysis », « BMA », « CostFunctionJ », « CostFunctionJAtCurrentOptimum », « CostFunctionJb », « CostFunctionJbAtCurrentOptimum », « CostFunctionJo », « CostFunctionJoAtCurrentOptimum », « CurrentIterationNumber », « CurrentOptimum », « CurrentState », « IndexOfOptimum », ].
Exemple :
{"StoreSupplementaryCalculations":["BMA", "CurrentState"]}
Informations et variables disponibles à la fin de l’algorithme¶
En sortie, après exécution de l’algorithme, on dispose d’informations et de
variables issues du calcul. La description des
Variables et informations disponibles en sortie indique la manière de les obtenir par la
méthode nommée get
, de la variable « ADD » du post-processing en interface
graphique, ou du cas en interface textuelle. Les variables d’entrée, mises à
disposition de l’utilisateur en sortie pour faciliter l’écriture des procédures
de post-processing, sont décrites dans l”Inventaire des informations potentiellement disponibles en sortie.
Sorties permanentes (non conditionnelles)
Les sorties non conditionnelles de l’algorithme sont les suivantes :
- Analysis
Liste de vecteurs. Chaque élément de cette variable est un état optimal
en optimisation ou une analyse
en assimilation de données.
Exemple :
Xa = ADD.get("Analysis")[-1]
- CostFunctionJ
Liste de valeurs. Chaque élément est une valeur de fonctionnelle d’écart
choisie.
Exemple :
J = ADD.get("CostFunctionJ")[:]
- CostFunctionJb
Liste de valeurs. Chaque élément est une valeur de fonctionnelle d’écart
, c’est-à-dire de la partie écart à l’ébauche. Si cette partie n’existe pas dans la fonctionnelle, sa valeur est nulle.
Exemple :
Jb = ADD.get("CostFunctionJb")[:]
- CostFunctionJo
Liste de valeurs. Chaque élément est une valeur de fonctionnelle d’écart
, c’est-à-dire de la partie écart à l’observation.
Exemple :
Jo = ADD.get("CostFunctionJo")[:]
Ensemble des sorties à la demande (conditionnelles ou non)
L’ensemble des sorties (conditionnelles ou non) de l’algorithme, classées par ordre alphabétique, est le suivant :
- Analysis
Liste de vecteurs. Chaque élément de cette variable est un état optimal
en optimisation ou une analyse
en assimilation de données.
Exemple :
Xa = ADD.get("Analysis")[-1]
- BMA
Liste de vecteurs. Chaque élément est un vecteur d’écart entre l’ébauche et l’état optimal.
Exemple :
bma = ADD.get("BMA")[-1]
- CostFunctionJ
Liste de valeurs. Chaque élément est une valeur de fonctionnelle d’écart
choisie.
Exemple :
J = ADD.get("CostFunctionJ")[:]
- CostFunctionJAtCurrentOptimum
Liste de valeurs. Chaque élément est une valeur de fonctionnelle d’écart
. A chaque pas, la valeur correspond à l’état optimal trouvé depuis le début.
Exemple :
JACO = ADD.get("CostFunctionJAtCurrentOptimum")[:]
- CostFunctionJb
Liste de valeurs. Chaque élément est une valeur de fonctionnelle d’écart
, c’est-à-dire de la partie écart à l’ébauche. Si cette partie n’existe pas dans la fonctionnelle, sa valeur est nulle.
Exemple :
Jb = ADD.get("CostFunctionJb")[:]
- CostFunctionJbAtCurrentOptimum
Liste de valeurs. Chaque élément est une valeur de fonctionnelle d’écart
, c’est-à-dire de la partie écart à l’ébauche. A chaque pas, la valeur correspond à l’état optimal trouvé depuis le début. Si cette partie n’existe pas dans la fonctionnelle, sa valeur est nulle.
Exemple :
JbACO = ADD.get("CostFunctionJbAtCurrentOptimum")[:]
- CostFunctionJo
Liste de valeurs. Chaque élément est une valeur de fonctionnelle d’écart
, c’est-à-dire de la partie écart à l’observation.
Exemple :
Jo = ADD.get("CostFunctionJo")[:]
- CostFunctionJoAtCurrentOptimum
Liste de valeurs. Chaque élément est une valeur de fonctionnelle d’écart
, c’est-à-dire de la partie écart à l’observation. A chaque pas, la valeur correspond à l’état optimal trouvé depuis le début.
Exemple :
JoACO = ADD.get("CostFunctionJoAtCurrentOptimum")[:]
- CurrentIterationNumber
Liste d’entiers. Chaque élément est l’index d’itération courant au cours du déroulement itératif de l’algorithme utilisé. Il y a une valeur d’index d’itération par pas d’assimilation correspondant à un état observé.
Exemple :
i = ADD.get("CurrentIterationNumber")[-1]
- CurrentOptimum
Liste de vecteurs. Chaque élément est le vecteur d’état optimal au pas de temps courant au cours du déroulement itératif de l’algorithme d’optimisation utilisé. Ce n’est pas nécessairement le dernier état.
Exemple :
Xo = ADD.get("CurrentOptimum")[:]
- CurrentState
Liste de vecteurs. Chaque élément est un vecteur d’état courant utilisé au cours du déroulement itératif de l’algorithme utilisé.
Exemple :
Xs = ADD.get("CurrentState")[:]
- IndexOfOptimum
Liste d’entiers. Chaque élément est l’index d’itération de l’optimum obtenu au cours du déroulement itératif de l’algorithme d’optimisation utilisé. Ce n’est pas nécessairement le numéro de la dernière itération.
Exemple :
i = ADD.get("IndexOfOptimum")[-1]
Voir aussi¶
Références vers d’autres sections :
- Algorithme de calcul « 3DVAR »
- Algorithme de calcul « KalmanFilter »
- Algorithme de calcul « ExtendedKalmanFilter »
- Algorithme de calcul « EnsembleKalmanFilter »
Références bibliographiques :