13.5. Algorithme de calcul « DifferentialEvolution »

13.5.1. Description

Cet algorithme réalise une estimation de l’état d’un système par minimisation d’une fonctionnelle d’écart J en utilisant une méthode évolutionnaire d’évolution différentielle. C’est une méthode qui n’utilise pas les dérivées de la fonctionnelle d’écart. Elle entre dans la même catégorie que l”Algorithme de calcul « DerivativeFreeOptimization », l”Algorithme de calcul « ParticleSwarmOptimization » ou l”Algorithme de calcul « TabuSearch ».

C’est une méthode d’optimisation permettant la recherche du minimum global d’une fonctionnelle d’erreur J quelconque de type L^1, L^2 ou L^{\infty}, avec ou sans pondérations. La fonctionnelle d’erreur par défaut est celle de moindres carrés pondérés augmentés, classiquement utilisée en assimilation de données.

13.5.2. Commandes requises et optionnelles

Les commandes générales requises, disponibles en édition dans l’interface graphique ou textuelle, sont les suivantes :

Background

Vecteur. La variable désigne le vecteur d’ébauche ou d’initialisation, usuellement noté \mathbf{x}^b. Sa valeur est définie comme un objet de type « Vector » ou « VectorSerie ». Sa disponibilité en sortie est conditionnée par le booléen « Stored » associé en entrée.

BackgroundError

Matrice. La variable désigne la matrice de covariance des erreurs d’ébauche, usuellement notée \mathbf{B}. Sa valeur est définie comme un objet de type « Matrix », de type « ScalarSparseMatrix », ou de type « DiagonalSparseMatrix », comme décrit en détail dans la section Conditions requises pour décrire des matrices de covariance. Sa disponibilité en sortie est conditionnée par le booléen « Stored » associé en entrée.

Observation

Liste de vecteurs. La variable désigne le vecteur d’observation utilisé en assimilation de données ou en optimisation, et usuellement noté \mathbf{y}^o. Sa valeur est définie comme un objet de type « Vector » si c’est une unique observation (temporelle ou pas) ou « VectorSerie » si c’est une succession d’observations. Sa disponibilité en sortie est conditionnée par le booléen « Stored » associé en entrée.

ObservationError

Matrice. La variable désigne la matrice de covariance des erreurs a priori d’ébauche, usuellement notée \mathbf{R}. Cette matrice est définie comme un objet de type « Matrix », de type « ScalarSparseMatrix », ou de type « DiagonalSparseMatrix », comme décrit en détail dans la section Conditions requises pour décrire des matrices de covariance. Sa disponibilité en sortie est conditionnée par le booléen « Stored » associé en entrée.

ObservationOperator

Opérateur. La variable désigne l’opérateur d’observation, usuellement noté H, qui transforme les paramètres d’entrée \mathbf{x} en résultats \mathbf{y} qui sont à comparer aux observations \mathbf{y}^o. Sa valeur est définie comme un objet de type « Function » ou de type « Matrix ». Dans le cas du type « Function », différentes formes fonctionnelles peuvent être utilisées, comme décrit dans la section Conditions requises pour les fonctions décrivant un opérateur. Si un contrôle U est inclus dans le modèle d’observation, l’opérateur doit être appliqué à une paire (X,U).

Les commandes optionnelles générales, disponibles en édition dans l’interface graphique ou textuelle, sont indiquées dans la Liste des commandes et mots-clés pour un cas d’assimilation de données ou d’optimisation. De plus, les paramètres de la commande « AlgorithmParameters » permettent d’indiquer les options particulières, décrites ci-après, de l’algorithme. On se reportera à la Description des options d’un algorithme par « AlgorithmParameters » pour le bon usage de cette commande.

Les options sont les suivantes :

Minimizer

Nom prédéfini. Cette clé permet de changer la stratégie de minimisation pour l’optimiseur. Le choix par défaut est « BEST1BIN », et les choix possibles sont les multiples variables pour les stratégies de croisement et mutation, décrites par les clés « BEST1BIN », « BEST1EXP », « BEST2BIN », « BEST2EXP », « RAND1BIN », « RAND1EXP », « RAND2BIN », « RAND2EXP », « RANDTOBEST1BIN », « RANDTOBEST1EXP ». Il est fortement conseillé de conserver la valeur par défaut.

Exemple : {"Minimizer":"BEST1BIN"}

Bounds

Liste de paires de valeurs réelles. Cette clé permet de définir des paires de bornes supérieure et inférieure pour chaque variable d’état optimisée. Les bornes doivent être données par une liste de liste de paires de bornes inférieure/supérieure pour chaque variable, avec une valeur extrême chaque fois qu’il n’y a pas de borne (None n’est pas une valeur autorisée lorsqu’il n’y a pas de borne).

Exemple : {"Bounds":[[2.,5.],[1.e-2,10.],[-30.,1.e99],[-1.e99,1.e99]]}

CrossOverProbability_CR

Valeur réelle. Cette clé permet de définir la probabilité de recombinaison ou de croisement lors de l’évolution différentielle. Cette variable est usuellement notée CR dans la littérature, et elle est obligatoirement comprise entre 0 et 1. La valeur par défaut est 0.7, et il est conseillé de la changer si nécessaire.

Exemple : {"CrossOverProbability_CR":0.7}

MaximumNumberOfIterations

Valeur entière. Cette clé indique le nombre maximum d’itérations internes possibles en optimisation itérative. Le défaut est 15000, qui est très similaire à une absence de limite sur les itérations. Il est ainsi recommandé d’adapter ce paramètre aux besoins pour des problèmes réels. Pour certains optimiseurs, le nombre de pas effectif d’arrêt peut être légèrement différent de la limite à cause d’exigences de contrôle interne de l’algorithme. On peut se reporter à la partie décrivant les manières de Contrôler la convergence pour des cas de calculs et algorithmes itératifs pour des recommandations plus détaillées.

Exemple : {"MaximumNumberOfIterations":100}

MaximumNumberOfFunctionEvaluations

Valeur entière. Cette clé indique le nombre maximum d’évaluations possibles de la fonctionnelle à optimiser. Le défaut est de 15000, qui est une limite arbitraire. Il est ainsi recommandé d’adapter ce paramètre aux besoins pour des problèmes réels. Pour certains optimiseurs, le nombre effectif d’évaluations à l’arrêt peut être légèrement différent de la limite à cause d’exigences de déroulement interne de l’algorithme.

Exemple : {"MaximumNumberOfFunctionEvaluations":50}

MutationDifferentialWeight_F

Paire de valeurs réelles. Cette clé permet de définir le poids différentiel dans l’étape de mutation. Cette variable est usuellement notée F dans la littérature. Il peut être constant s’il est sous la forme d’une valeur unique, ou variable de manière aléatoire dans les deux bornes données dans la paire. La valeur par défaut est (0.5, 1).

Exemple : {"MutationDifferentialWeight_F":(0.5, 1)}

PopulationSize

Valeur entière. Cette clé permet de définir la taille (approximative) de la population à chaque génération. Cette taille est légèrement ajustée pour tenir compte du nombre de variables d’état à optimiser. La valeur par défaut est 100. Il est conseillé de choisir une population comprise entre 1 et une dizaine de fois le nombre de variables d’états, la taille étant proportionnellement d’autant plus petite que le nombre de variables augmente.

Exemple : {"PopulationSize":100}

QualityCriterion

Nom prédéfini. Cette clé indique le critère de qualité, qui est minimisé pour trouver l’estimation optimale de l’état. Le défaut est le critère usuel de l’assimilation de données nommé « DA », qui est le critère de moindres carrés pondérés augmentés. Le critère possible est dans la liste suivante, dans laquelle les noms équivalents sont indiqués par un signe « <=> » : [« AugmentedWeightedLeastSquares » <=> « AWLS » <=> « DA », « WeightedLeastSquares » <=> « WLS », « LeastSquares » <=> « LS » <=> « L2 », « AbsoluteValue » <=> « L1 », « MaximumError » <=> « ME » <=> « Linf »]. On pourra se reporter à la section pour Approfondir l’estimation d’état par des méthodes d’optimisation afin de disposer de la définition détaillée de ces critères de qualité.

Exemple : {"QualityCriterion":"DA"}

SetSeed

Valeur entière. Cette clé permet de donner un nombre entier pour fixer la graine du générateur aléatoire utilisé dans l’algorithme. Par défaut, la graine est laissée non initialisée, et elle utilise ainsi l’initialisation par défaut de l’ordinateur, qui varie donc à chaque étude. Pour assurer la reproductibilité de résultats impliquant des tirages aléatoires, il est fortement conseillé d’initialiser la graine. Une valeur simple est par exemple 123456789. Il est conseillé de mettre un entier à plus de 6 ou 7 chiffres pour bien initialiser le générateur aléatoire.

Exemple : {"SetSeed":123456789}

StoreSupplementaryCalculations

Liste de noms. Cette liste indique les noms des variables supplémentaires, qui peuvent être disponibles au cours du déroulement ou à la fin de l’algorithme, si elles sont initialement demandées par l’utilisateur. Leur disponibilité implique, potentiellement, des calculs ou du stockage coûteux. La valeur par défaut est donc une liste vide, aucune de ces variables n’étant calculée et stockée par défaut (sauf les variables inconditionnelles). Les noms possibles pour les variables supplémentaires sont dans la liste suivante (la description détaillée de chaque variable nommée est donnée dans la suite de cette documentation par algorithme spécifique, dans la sous-partie « Informations et variables disponibles à la fin de l’algorithme ») : [ « Analysis », « BMA », « CostFunctionJ », « CostFunctionJb », « CostFunctionJo », « CostFunctionJAtCurrentOptimum », « CostFunctionJbAtCurrentOptimum », « CostFunctionJoAtCurrentOptimum », « CurrentIterationNumber », « CurrentOptimum », « CurrentState », « IndexOfOptimum », « Innovation », « InnovationAtCurrentState », « OMA », « OMB », « SimulatedObservationAtBackground », « SimulatedObservationAtCurrentOptimum », « SimulatedObservationAtCurrentState », « SimulatedObservationAtOptimum », ].

Exemple : {"StoreSupplementaryCalculations":["CurrentState", "Residu"]}

13.5.3. Informations et variables disponibles à la fin de l’algorithme

En sortie, après exécution de l’algorithme, on dispose d’informations et de variables issues du calcul. La description des Variables et informations disponibles en sortie indique la manière de les obtenir par la méthode nommée get, de la variable « ADD » du post-processing en interface graphique, ou du cas en interface textuelle. Les variables d’entrée, mises à disposition de l’utilisateur en sortie pour faciliter l’écriture des procédures de post-processing, sont décrites dans l”Inventaire des informations potentiellement disponibles en sortie.

Sorties permanentes (non conditionnelles)

Les sorties non conditionnelles de l’algorithme sont les suivantes :

Analysis

Liste de vecteurs. Chaque élément de cette variable est un état optimal \mathbf{x}^* en optimisation, une interpolation ou une analyse \mathbf{x}^a en assimilation de données.

Exemple : xa = ADD.get("Analysis")[-1]

CostFunctionJ

Liste de valeurs. Chaque élément est une valeur de fonctionnelle d’écart J choisie.

Exemple : J = ADD.get("CostFunctionJ")[:]

CostFunctionJb

Liste de valeurs. Chaque élément est une valeur de fonctionnelle d’écart J^b, c’est-à-dire de la partie écart à l’ébauche. Si cette partie n’existe pas dans la fonctionnelle, sa valeur est nulle.

Exemple : Jb = ADD.get("CostFunctionJb")[:]

CostFunctionJo

Liste de valeurs. Chaque élément est une valeur de fonctionnelle d’écart J^o, c’est-à-dire de la partie écart à l’observation.

Exemple : Jo = ADD.get("CostFunctionJo")[:]

CurrentState

Liste de vecteurs. Chaque élément est un vecteur d’état courant utilisé au cours du déroulement itératif de l’algorithme utilisé.

Exemple : xs = ADD.get("CurrentState")[:]

Ensemble des sorties à la demande (conditionnelles ou non)

L’ensemble des sorties (conditionnelles ou non) de l’algorithme, classées par ordre alphabétique, est le suivant :

Analysis

Liste de vecteurs. Chaque élément de cette variable est un état optimal \mathbf{x}^* en optimisation, une interpolation ou une analyse \mathbf{x}^a en assimilation de données.

Exemple : xa = ADD.get("Analysis")[-1]

BMA

Liste de vecteurs. Chaque élément est un vecteur d’écart entre l’ébauche et l’état optimal.

Exemple : bma = ADD.get("BMA")[-1]

CostFunctionJ

Liste de valeurs. Chaque élément est une valeur de fonctionnelle d’écart J choisie.

Exemple : J = ADD.get("CostFunctionJ")[:]

CostFunctionJb

Liste de valeurs. Chaque élément est une valeur de fonctionnelle d’écart J^b, c’est-à-dire de la partie écart à l’ébauche. Si cette partie n’existe pas dans la fonctionnelle, sa valeur est nulle.

Exemple : Jb = ADD.get("CostFunctionJb")[:]

CostFunctionJo

Liste de valeurs. Chaque élément est une valeur de fonctionnelle d’écart J^o, c’est-à-dire de la partie écart à l’observation.

Exemple : Jo = ADD.get("CostFunctionJo")[:]

CostFunctionJAtCurrentOptimum

Liste de valeurs. Chaque élément est une valeur de fonctionnelle d’écart J. A chaque pas, la valeur correspond à l’état optimal trouvé depuis le début.

Exemple : JACO = ADD.get("CostFunctionJAtCurrentOptimum")[:]

CostFunctionJbAtCurrentOptimum

Liste de valeurs. Chaque élément est une valeur de fonctionnelle d’écart J^b, c’est-à-dire de la partie écart à l’ébauche. A chaque pas, la valeur correspond à l’état optimal trouvé depuis le début. Si cette partie n’existe pas dans la fonctionnelle, sa valeur est nulle.

Exemple : JbACO = ADD.get("CostFunctionJbAtCurrentOptimum")[:]

CostFunctionJoAtCurrentOptimum

Liste de valeurs. Chaque élément est une valeur de fonctionnelle d’écart J^o, c’est-à-dire de la partie écart à l’observation. A chaque pas, la valeur correspond à l’état optimal trouvé depuis le début.

Exemple : JoACO = ADD.get("CostFunctionJoAtCurrentOptimum")[:]

CurrentIterationNumber

Liste d’entiers. Chaque élément est l’index d’itération courant au cours du déroulement itératif de l’algorithme utilisé. Il y a une valeur d’index d’itération par pas d’assimilation correspondant à un état observé.

Exemple : cin = ADD.get("CurrentIterationNumber")[-1]

CurrentOptimum

Liste de vecteurs. Chaque élément est le vecteur d’état optimal au pas de temps courant au cours du déroulement itératif de l’algorithme d’optimisation utilisé. Ce n’est pas nécessairement le dernier état.

Exemple : xo = ADD.get("CurrentOptimum")[:]

CurrentState

Liste de vecteurs. Chaque élément est un vecteur d’état courant utilisé au cours du déroulement itératif de l’algorithme utilisé.

Exemple : xs = ADD.get("CurrentState")[:]

IndexOfOptimum

Liste d’entiers. Chaque élément est l’index d’itération de l’optimum obtenu au cours du déroulement itératif de l’algorithme d’optimisation utilisé. Ce n’est pas nécessairement le numéro de la dernière itération.

Exemple : ioo = ADD.get("IndexOfOptimum")[-1]

Innovation

Liste de vecteurs. Chaque élément est un vecteur d’innovation, qui est en statique l’écart de l’optimum à l’ébauche, et en dynamique l’incrément d’évolution.

Exemple : d = ADD.get("Innovation")[-1]

InnovationAtCurrentState

Liste de vecteurs. Chaque élément est un vecteur d’innovation à l’état courant avant analyse.

Exemple : ds = ADD.get("InnovationAtCurrentState")[-1]

OMA

Liste de vecteurs. Chaque élément est un vecteur d’écart entre l’observation et l’état optimal dans l’espace des observations.

Exemple : oma = ADD.get("OMA")[-1]

OMB

Liste de vecteurs. Chaque élément est un vecteur d’écart entre l’observation et l’état d’ébauche dans l’espace des observations.

Exemple : omb = ADD.get("OMB")[-1]

SimulatedObservationAtBackground

Liste de vecteurs. Chaque élément est un vecteur d’observation simulé par l’opérateur d’observation à partir de l’ébauche \mathbf{x}^b. C’est la prévision à partir de l’ébauche, elle est parfois appelée « Dry ».

Exemple : hxb = ADD.get("SimulatedObservationAtBackground")[-1]

SimulatedObservationAtCurrentOptimum

Liste de vecteurs. Chaque élément est un vecteur d’observation simulé par l’opérateur d’observation à partir de l’état optimal au pas de temps courant au cours du déroulement de l’algorithme d’optimisation, c’est-à-dire dans l’espace des observations.

Exemple : hxo = ADD.get("SimulatedObservationAtCurrentOptimum")[-1]

SimulatedObservationAtCurrentState

Liste de vecteurs. Chaque élément est un vecteur d’observation simulé par l’opérateur d’observation à partir de l’état courant, c’est-à-dire dans l’espace des observations.

Exemple : hxs = ADD.get("SimulatedObservationAtCurrentState")[-1]

SimulatedObservationAtOptimum

Liste de vecteurs. Chaque élément est un vecteur d’observation obtenu par l’opérateur d’observation à partir de la simulation d’analyse ou d’état optimal \mathbf{x}^a. C’est l’observation de la prévision à partir de l’analyse ou de l’état optimal, et elle est parfois appelée « Forecast ».

Exemple : hxa = ADD.get("SimulatedObservationAtOptimum")[-1]