13.14. Algorithme de calcul « QuantileRegression »

13.14.1. Description

Cet algorithme d’optimisation mono-objectif sur les paramètres de modèle permet d’estimer les quantiles conditionnels de la distribution des paramètres d’état, exprimés à l’aide d’un modèle des variables observées. Ce sont donc les quantiles sur les variables observées qui vont permettre de déterminer les paramètres de modèles satisfaisant aux conditions de quantiles.

13.14.2. Commandes requises et optionnelles

Les commandes générales requises, disponibles en édition dans l’interface graphique ou textuelle, sont les suivantes :

Background

Vecteur. La variable désigne le vecteur d’ébauche ou d’initialisation, usuellement noté \mathbf{x}^b. Sa valeur est définie comme un objet de type « Vector » ou « VectorSerie ». Sa disponibilité en sortie est conditionnée par le booléen « Stored » associé en entrée.

Observation

Liste de vecteurs. La variable désigne le vecteur d’observation utilisé en assimilation de données ou en optimisation, et usuellement noté \mathbf{y}^o. Sa valeur est définie comme un objet de type « Vector » si c’est une unique observation (temporelle ou pas) ou « VectorSerie » si c’est une succession d’observations. Sa disponibilité en sortie est conditionnée par le booléen « Stored » associé en entrée.

ObservationOperator

Opérateur. La variable désigne l’opérateur d’observation, usuellement noté H, qui transforme les paramètres d’entrée \mathbf{x} en résultats \mathbf{y} qui sont à comparer aux observations \mathbf{y}^o. Sa valeur est définie comme un objet de type « Function » ou de type « Matrix ». Dans le cas du type « Function », différentes formes fonctionnelles peuvent être utilisées, comme décrit dans la section Conditions requises pour les fonctions décrivant un opérateur. Si un contrôle U est inclus dans le modèle d’observation, l’opérateur doit être appliqué à une paire (X,U).

Les commandes optionnelles générales, disponibles en édition dans l’interface graphique ou textuelle, sont indiquées dans la Liste des commandes et mots-clés pour un cas d’assimilation de données ou d’optimisation. De plus, les paramètres de la commande « AlgorithmParameters » permettent d’indiquer les options particulières, décrites ci-après, de l’algorithme. On se reportera à la Description des options d’un algorithme par « AlgorithmParameters » pour le bon usage de cette commande.

Les options sont les suivantes :

Bounds

Liste de paires de valeurs réelles. Cette clé permet de définir des paires de bornes supérieure et inférieure pour chaque variable d’état optimisée. Les bornes doivent être données par une liste de liste de paires de bornes inférieure/supérieure pour chaque variable, avec une valeur None chaque fois qu’il n’y a pas de borne. Les bornes peuvent toujours être spécifiées, mais seuls les optimiseurs sous contraintes les prennent en compte.

Exemple : {"Bounds":[[2.,5.],[1.e-2,10.],[-30.,None],[None,None]]}

CostDecrementTolerance

Valeur réelle. Cette clé indique une valeur limite, conduisant à arrêter le processus itératif d’optimisation lorsque la fonction coût décroît moins que cette tolérance au dernier pas. Le défaut est de 1.e-6, et il est recommandé de l’adapter aux besoins pour des problèmes réels. On peut se reporter à la partie décrivant les manières de Contrôler la convergence pour des cas de calculs et algorithmes itératifs pour des recommandations plus détaillées.

Exemple : {"CostDecrementTolerance":1.e-6}

InitializationPoint

Vecteur. La variable désigne un vecteur à utiliser comme l’état initial autour duquel démarre un algorithme itératif. Par défaut, cet état initial n’a pas besoin d’être fourni et il est égal à l’ébauche \mathbf{x}^b. Sa valeur doit permettre de construire un vecteur de taille identique à l’ébauche. Dans le cas où il est fourni, il ne remplace l’ébauche que pour l’initialisation.

Exemple : {"InitializationPoint":[1, 2, 3, 4, 5]}

MaximumNumberOfIterations

Valeur entière. Cette clé indique le nombre maximum d’itérations internes possibles en optimisation itérative. Le défaut est 15000, qui est très similaire à une absence de limite sur les itérations. Il est ainsi recommandé d’adapter ce paramètre aux besoins pour des problèmes réels. Pour certains optimiseurs, le nombre de pas effectif d’arrêt peut être légèrement différent de la limite à cause d’exigences de contrôle interne de l’algorithme. On peut se reporter à la partie décrivant les manières de Contrôler la convergence pour des cas de calculs et algorithmes itératifs pour des recommandations plus détaillées.

Exemple : {"MaximumNumberOfIterations":100}

Quantile

Valeur réelle. Cette clé permet de définir la valeur réelle du quantile recherché, entre 0 et 1. La valeur par défaut est 0.5, correspondant à la médiane.

Exemple : {"Quantile":0.5}

StoreSupplementaryCalculations

Liste de noms. Cette liste indique les noms des variables supplémentaires, qui peuvent être disponibles au cours du déroulement ou à la fin de l’algorithme, si elles sont initialement demandées par l’utilisateur. Leur disponibilité implique, potentiellement, des calculs ou du stockage coûteux. La valeur par défaut est donc une liste vide, aucune de ces variables n’étant calculée et stockée par défaut (sauf les variables inconditionnelles). Les noms possibles pour les variables supplémentaires sont dans la liste suivante (la description détaillée de chaque variable nommée est donnée dans la suite de cette documentation par algorithme spécifique, dans la sous-partie « Informations et variables disponibles à la fin de l’algorithme ») : [ « Analysis », « BMA », « CostFunctionJ », « CostFunctionJb », « CostFunctionJo », « CurrentIterationNumber », « CurrentState », « Innovation », « OMA », « OMB », « SimulatedObservationAtBackground », « SimulatedObservationAtCurrentState », « SimulatedObservationAtOptimum », ].

Exemple : {"StoreSupplementaryCalculations":["CurrentState", "Residu"]}

Astuce pour cet algorithme :

Comme les commandes « BackgroundError » et « ObservationError » sont requises pour TOUS les algorithmes de calcul dans l’interface graphique, vous devez fournir une valeur, malgré le fait que ces commandes ne soient pas nécessaires pour cet algorithme, et ne sont donc pas utilisées. La manière la plus simple est de donner « 1 » comme un STRING pour les deux.

13.14.3. Informations et variables disponibles à la fin de l’algorithme

En sortie, après exécution de l’algorithme, on dispose d’informations et de variables issues du calcul. La description des Variables et informations disponibles en sortie indique la manière de les obtenir par la méthode nommée get, de la variable « ADD » du post-processing en interface graphique, ou du cas en interface textuelle. Les variables d’entrée, mises à disposition de l’utilisateur en sortie pour faciliter l’écriture des procédures de post-processing, sont décrites dans l”Inventaire des informations potentiellement disponibles en sortie.

Sorties permanentes (non conditionnelles)

Les sorties non conditionnelles de l’algorithme sont les suivantes :

Analysis

Liste de vecteurs. Chaque élément de cette variable est un état optimal \mathbf{x}^* en optimisation, une interpolation ou une analyse \mathbf{x}^a en assimilation de données.

Exemple : xa = ADD.get("Analysis")[-1]

CostFunctionJ

Liste de valeurs. Chaque élément est une valeur de fonctionnelle d’écart J choisie.

Exemple : J = ADD.get("CostFunctionJ")[:]

CostFunctionJb

Liste de valeurs. Chaque élément est une valeur de fonctionnelle d’écart J^b, c’est-à-dire de la partie écart à l’ébauche. Si cette partie n’existe pas dans la fonctionnelle, sa valeur est nulle.

Exemple : Jb = ADD.get("CostFunctionJb")[:]

CostFunctionJo

Liste de valeurs. Chaque élément est une valeur de fonctionnelle d’écart J^o, c’est-à-dire de la partie écart à l’observation.

Exemple : Jo = ADD.get("CostFunctionJo")[:]

Ensemble des sorties à la demande (conditionnelles ou non)

L’ensemble des sorties (conditionnelles ou non) de l’algorithme, classées par ordre alphabétique, est le suivant :

Analysis

Liste de vecteurs. Chaque élément de cette variable est un état optimal \mathbf{x}^* en optimisation, une interpolation ou une analyse \mathbf{x}^a en assimilation de données.

Exemple : xa = ADD.get("Analysis")[-1]

BMA

Liste de vecteurs. Chaque élément est un vecteur d’écart entre l’ébauche et l’état optimal.

Exemple : bma = ADD.get("BMA")[-1]

CostFunctionJ

Liste de valeurs. Chaque élément est une valeur de fonctionnelle d’écart J choisie.

Exemple : J = ADD.get("CostFunctionJ")[:]

CostFunctionJb

Liste de valeurs. Chaque élément est une valeur de fonctionnelle d’écart J^b, c’est-à-dire de la partie écart à l’ébauche. Si cette partie n’existe pas dans la fonctionnelle, sa valeur est nulle.

Exemple : Jb = ADD.get("CostFunctionJb")[:]

CostFunctionJo

Liste de valeurs. Chaque élément est une valeur de fonctionnelle d’écart J^o, c’est-à-dire de la partie écart à l’observation.

Exemple : Jo = ADD.get("CostFunctionJo")[:]

CurrentIterationNumber

Liste d’entiers. Chaque élément est l’index d’itération courant au cours du déroulement itératif de l’algorithme utilisé. Il y a une valeur d’index d’itération par pas d’assimilation correspondant à un état observé.

Exemple : cin = ADD.get("CurrentIterationNumber")[-1]

CurrentState

Liste de vecteurs. Chaque élément est un vecteur d’état courant utilisé au cours du déroulement itératif de l’algorithme utilisé.

Exemple : xs = ADD.get("CurrentState")[:]

Innovation

Liste de vecteurs. Chaque élément est un vecteur d’innovation, qui est en statique l’écart de l’optimum à l’ébauche, et en dynamique l’incrément d’évolution.

Exemple : d = ADD.get("Innovation")[-1]

OMA

Liste de vecteurs. Chaque élément est un vecteur d’écart entre l’observation et l’état optimal dans l’espace des observations.

Exemple : oma = ADD.get("OMA")[-1]

OMB

Liste de vecteurs. Chaque élément est un vecteur d’écart entre l’observation et l’état d’ébauche dans l’espace des observations.

Exemple : omb = ADD.get("OMB")[-1]

SimulatedObservationAtBackground

Liste de vecteurs. Chaque élément est un vecteur d’observation simulé par l’opérateur d’observation à partir de l’ébauche \mathbf{x}^b. C’est la prévision à partir de l’ébauche, elle est parfois appelée « Dry ».

Exemple : hxb = ADD.get("SimulatedObservationAtBackground")[-1]

SimulatedObservationAtCurrentState

Liste de vecteurs. Chaque élément est un vecteur d’observation simulé par l’opérateur d’observation à partir de l’état courant, c’est-à-dire dans l’espace des observations.

Exemple : hxs = ADD.get("SimulatedObservationAtCurrentState")[-1]

SimulatedObservationAtOptimum

Liste de vecteurs. Chaque élément est un vecteur d’observation obtenu par l’opérateur d’observation à partir de la simulation d’analyse ou d’état optimal \mathbf{x}^a. C’est l’observation de la prévision à partir de l’analyse ou de l’état optimal, et elle est parfois appelée « Forecast ».

Exemple : hxa = ADD.get("SimulatedObservationAtOptimum")[-1]

13.14.4. Voir aussi

Références vers d’autres sections :

Références bibliographiques :