13.8. Algorithme de calcul « ExtendedBlue »¶
Description¶
Cet algorithme réalise une estimation de type BLUE étendu (Best Linear Unbiased Estimator, étendu) de l’état d’un système.
Cet algorithme est une généralisation partiellement non-linéaire d’un Algorithme de calcul « Blue ». Si l’opérateur d’observation est explicitement linéaire, l’algorithme est équivalent à celui du Algorithme de calcul « Blue ». On peut vérifier la linéarité de l’opérateur d’observation à l’aide d’un Algorithme de vérification « LinearityTest ».
En non-linéaire, ses résultats se rapprochent d’un Algorithme de calcul « 3DVAR », sans lui être entièrement équivalent.
Cet algorithme est naturellement écrit pour une estimation unique, sans notion dynamique ou itérative (il n’y a donc pas besoin dans ce cas d’opérateur d’évolution incrémentale, ni de covariance d’erreurs d’évolution). Dans ADAO, il peut aussi être utilisé sur une succession d’observations, plaçant alors l’estimation dans un cadre récursif en partie similaire à un Algorithme de calcul « KalmanFilter ». Une estimation standard est effectuée à chaque pas d’observation sur l’état prévu par le modèle d’évolution incrémentale, sachant que la covariance d’erreur d’état reste la covariance d’ébauche initialement fournie par l’utilisateur. Pour être explicite, contrairement aux filtres de type Kalman, la covariance d’erreurs sur les états n’est pas remise à jour.
Commandes requises et optionnelles¶
Les commandes générales requises, disponibles en édition dans l’interface graphique ou textuelle, sont les suivantes :
- Background
- Vecteur. La variable désigne le vecteur d’ébauche ou d’initialisation,
usuellement noté
. Sa valeur est définie comme un objet de type « Vector » ou « VectorSerie ». Sa disponibilité en sortie est conditionnée par le booléen « Stored » associé en entrée.
- BackgroundError
- Matrice. La variable désigne la matrice de covariance des erreurs
d’ébauche, usuellement notée
. Sa valeur est définie comme un objet de type « Matrix », de type « ScalarSparseMatrix », ou de type « DiagonalSparseMatrix », comme décrit en détail dans la section Conditions requises pour décrire des matrices de covariance. Sa disponibilité en sortie est conditionnée par le booléen « Stored » associé en entrée.
- Observation
- Liste de vecteurs. La variable désigne le vecteur d’observation utilisé en
assimilation de données ou en optimisation, et usuellement noté
. Sa valeur est définie comme un objet de type « Vector » si c’est une unique observation (temporelle ou pas) ou « VectorSerie » si c’est une succession d’observations. Sa disponibilité en sortie est conditionnée par le booléen « Stored » associé en entrée.
- ObservationError
- Matrice. La variable désigne la matrice de covariance des erreurs a
priori d’ébauche, usuellement notée
. Cette matrice est définie comme un objet de type « Matrix », de type « ScalarSparseMatrix », ou de type « DiagonalSparseMatrix », comme décrit en détail dans la section Conditions requises pour décrire des matrices de covariance. Sa disponibilité en sortie est conditionnée par le booléen « Stored » associé en entrée.
- ObservationOperator
- Opérateur. La variable désigne l’opérateur d’observation, usuellement noté
, qui transforme les paramètres d’entrée
en résultats
qui sont à comparer aux observations
. Sa valeur est définie comme un objet de type « Function » ou de type « Matrix ». Dans le cas du type « Function », différentes formes fonctionnelles peuvent être utilisées, comme décrit dans la section Conditions requises pour les fonctions décrivant un opérateur. Si un contrôle
est inclus dans le modèle d’observation, l’opérateur doit être appliqué à une paire
.
Les commandes optionnelles générales, disponibles en édition dans l’interface graphique ou textuelle, sont indiquées dans la Liste des commandes et mots-clés pour un cas d’assimilation de données ou d’optimisation. De plus, les paramètres de la commande « AlgorithmParameters » permettent d’indiquer les options particulières, décrites ci-après, de l’algorithme. On se reportera à la Description des options d’un algorithme par « AlgorithmParameters » pour le bon usage de cette commande.
Les options sont les suivantes :
- EstimationOf
Nom prédéfini. Cette clé permet de choisir le type d’estimation à réaliser. Cela peut être soit une estimation de l’état, avec la valeur « State », ou une estimation de paramètres, avec la valeur « Parameters ». Le choix par défaut est « Parameters ».
Exemple :
{"EstimationOf":"Parameters"}
- NumberOfSamplesForQuantiles
Valeur entière. Cette clé indique le nombre de simulations effectuées pour estimer les quantiles. Cette option n’est utile que si le calcul supplémentaire « SimulationQuantiles » a été choisi. Le défaut est 100, ce qui suffit souvent pour une estimation correcte de quantiles courants à 5%, 10%, 90% ou 95%.
Exemple :
{"NumberOfSamplesForQuantiles":100}
- Quantiles
Liste de valeurs réelles. Cette liste indique les valeurs de quantile, entre 0 et 1, à estimer par simulation autour de l’état optimal. L’échantillonnage utilise des tirages aléatoires gaussiens multivariés, dirigés par la matrice de covariance a posteriori. Cette option n’est utile que si le calcul supplémentaire « SimulationQuantiles » a été choisi. La valeur par défaut est une liste vide.
Exemple :
{"Quantiles":[0.1,0.9]}
- SetSeed
Valeur entière. Cette clé permet de donner un nombre entier pour fixer la graine du générateur aléatoire utilisé dans l’algorithme. Par défaut, la graine est laissée non initialisée, et elle utilise ainsi l’initialisation par défaut de l’ordinateur, qui varie donc à chaque étude. Pour assurer la reproductibilité de résultats impliquant des tirages aléatoires, il est fortement conseiller d’initialiser la graine. Une valeur simple est par exemple 123456789. Il est conseillé de mettre un entier à plus de 6 ou 7 chiffres pour bien initialiser le générateur aléatoire.
Exemple :
{"SetSeed":123456789}
- SimulationForQuantiles
Nom prédéfini. Cette clé indique le type de simulation, linéaire (avec l’opérateur d’observation tangent appliqué sur des incréments de perturbations autour de l’état optimal) ou non-linéaire (avec l’opérateur d’observation standard appliqué aux états perturbés), que l’on veut faire pour chaque perturbation. Cela change essentiellement le temps de chaque simulation élémentaire, usuellement plus long en non-linéaire qu’en linéaire. Cette option n’est utile que si le calcul supplémentaire « SimulationQuantiles » a été choisi. La valeur par défaut est « Linear », et les choix possibles sont « Linear » et « NonLinear ».
Exemple :
{"SimulationForQuantiles":"Linear"}
- StateBoundsForQuantiles
Liste de paires de valeurs réelles. Cette clé permet de définir des paires de bornes supérieure et inférieure pour chaque variable d’état utilisée dans la simulation des quantiles. Les bornes doivent être données par une liste de liste de paires de bornes inférieure/supérieure pour chaque variable, avec une valeur
None
chaque fois qu’il n’y a pas de borne.En l’absence de définition de ces bornes pour la simulation des quantiles et si des bornes d’optimisation sont définies, ce sont ces dernières qui sont utilisées pour la simulation des quantiles. Si ces bornes pour la simulation des quantiles sont définies, elles sont utilisées quelles que soient les bornes d’optimisation définies. Si cette variable est définie à
None
, alors aucune borne n’est utilisée pour les états utilisés dans la simulation des quantiles quelles que soient les bornes d’optimisation définies.Exemple :
{"StateBoundsForQuantiles":[[2.,5.],[1.e-2,10.],[-30.,None],[None,None]]}
- StoreSupplementaryCalculations
Liste de noms. Cette liste indique les noms des variables supplémentaires, qui peuvent être disponibles au cours du déroulement ou à la fin de l’algorithme, si elles sont initialement demandées par l’utilisateur. Leur disponibilité implique, potentiellement, des calculs ou du stockage coûteux. La valeur par défaut est donc une liste vide, aucune de ces variables n’étant calculée et stockée par défaut (sauf les variables inconditionnelles). Les noms possibles pour les variables supplémentaires sont dans la liste suivante (la description détaillée de chaque variable nommée est donnée dans la suite de cette documentation par algorithme spécifique, dans la sous-partie « Informations et variables disponibles à la fin de l’algorithme ») : [ « Analysis », « APosterioriCorrelations », « APosterioriCovariance », « APosterioriStandardDeviations », « APosterioriVariances », « BMA », « CostFunctionJ », « CostFunctionJAtCurrentOptimum », « CostFunctionJb », « CostFunctionJbAtCurrentOptimum », « CostFunctionJo », « CostFunctionJoAtCurrentOptimum », « CurrentOptimum », « CurrentState », « CurrentStepNumber », « ForecastState », « Innovation », « InnovationAtCurrentAnalysis », « MahalanobisConsistency », « OMA », « OMB », « SampledStateForQuantiles », « SigmaBck2 », « SigmaObs2 », « SimulatedObservationAtBackground », « SimulatedObservationAtCurrentOptimum », « SimulatedObservationAtCurrentState », « SimulatedObservationAtOptimum », « SimulationQuantiles », ].
Exemple :
{"StoreSupplementaryCalculations":["BMA", "CurrentState"]}
Informations et variables disponibles à la fin de l’algorithme¶
En sortie, après exécution de l’algorithme, on dispose d’informations et de
variables issues du calcul. La description des
Variables et informations disponibles en sortie indique la manière de les obtenir par la
méthode nommée get
, de la variable « ADD » du post-processing en interface
graphique, ou du cas en interface textuelle. Les variables d’entrée, mises à
disposition de l’utilisateur en sortie pour faciliter l’écriture des procédures
de post-processing, sont décrites dans l”Inventaire des informations potentiellement disponibles en sortie.
Sorties permanentes (non conditionnelles)
Les sorties non conditionnelles de l’algorithme sont les suivantes :
- Analysis
Liste de vecteurs. Chaque élément de cette variable est un état optimal
en optimisation ou une analyse
en assimilation de données.
Exemple :
Xa = ADD.get("Analysis")[-1]
Ensemble des sorties à la demande (conditionnelles ou non)
L’ensemble des sorties (conditionnelles ou non) de l’algorithme, classées par ordre alphabétique, est le suivant :
- Analysis
Liste de vecteurs. Chaque élément de cette variable est un état optimal
en optimisation ou une analyse
en assimilation de données.
Exemple :
Xa = ADD.get("Analysis")[-1]
- APosterioriCorrelations
Liste de matrices. Chaque élément est une matrice de corrélations des erreurs a posteriori de l’état optimal, issue de la matrice
des covariances. Pour en disposer, il faut avoir en même temps demandé le calcul de ces covariances d’erreurs a posteriori.
Exemple :
C = ADD.get("APosterioriCorrelations")[-1]
- APosterioriCovariance
Liste de matrices. Chaque élément est une matrice
de covariances des erreurs a posteriori de l’état optimal.
Exemple :
A = ADD.get("APosterioriCovariance")[-1]
- APosterioriStandardDeviations
Liste de matrices. Chaque élément est une matrice diagonale d’écarts-types des erreurs a posteriori de l’état optimal, issue de la matrice
des covariances. Pour en disposer, il faut avoir en même temps demandé le calcul de ces covariances d’erreurs a posteriori.
Exemple :
S = ADD.get("APosterioriStandardDeviations")[-1]
- APosterioriVariances
Liste de matrices. Chaque élément est une matrice diagonale de variances des erreurs a posteriori de l’état optimal, issue de la matrice
des covariances. Pour en disposer, il faut avoir en même temps demandé le calcul de ces covariances d’erreurs a posteriori.
Exemple :
V = ADD.get("APosterioriVariances")[-1]
- BMA
Liste de vecteurs. Chaque élément est un vecteur d’écart entre l’ébauche et l’état optimal.
Exemple :
bma = ADD.get("BMA")[-1]
- CostFunctionJ
Liste de valeurs. Chaque élément est une valeur de fonctionnelle d’écart
choisie.
Exemple :
J = ADD.get("CostFunctionJ")[:]
- CostFunctionJAtCurrentOptimum
Liste de valeurs. Chaque élément est une valeur de fonctionnelle d’écart
. A chaque pas, la valeur correspond à l’état optimal trouvé depuis le début.
Exemple :
JACO = ADD.get("CostFunctionJAtCurrentOptimum")[:]
- CostFunctionJb
Liste de valeurs. Chaque élément est une valeur de fonctionnelle d’écart
, c’est-à-dire de la partie écart à l’ébauche. Si cette partie n’existe pas dans la fonctionnelle, sa valeur est nulle.
Exemple :
Jb = ADD.get("CostFunctionJb")[:]
- CostFunctionJbAtCurrentOptimum
Liste de valeurs. Chaque élément est une valeur de fonctionnelle d’écart
, c’est-à-dire de la partie écart à l’ébauche. A chaque pas, la valeur correspond à l’état optimal trouvé depuis le début. Si cette partie n’existe pas dans la fonctionnelle, sa valeur est nulle.
Exemple :
JbACO = ADD.get("CostFunctionJbAtCurrentOptimum")[:]
- CostFunctionJo
Liste de valeurs. Chaque élément est une valeur de fonctionnelle d’écart
, c’est-à-dire de la partie écart à l’observation.
Exemple :
Jo = ADD.get("CostFunctionJo")[:]
- CostFunctionJoAtCurrentOptimum
Liste de valeurs. Chaque élément est une valeur de fonctionnelle d’écart
, c’est-à-dire de la partie écart à l’observation. A chaque pas, la valeur correspond à l’état optimal trouvé depuis le début.
Exemple :
JoACO = ADD.get("CostFunctionJoAtCurrentOptimum")[:]
- CurrentOptimum
Liste de vecteurs. Chaque élément est le vecteur d’état optimal au pas de temps courant au cours du déroulement itératif de l’algorithme d’optimisation utilisé. Ce n’est pas nécessairement le dernier état.
Exemple :
Xo = ADD.get("CurrentOptimum")[:]
- CurrentState
Liste de vecteurs. Chaque élément est un vecteur d’état courant utilisé au cours du déroulement itératif de l’algorithme utilisé.
Exemple :
Xs = ADD.get("CurrentState")[:]
- CurrentStepNumber
Liste d’entiers. Chaque élément est l’index du pas courant au cours du déroulement itératif, piloté par la série des observations, de l’algorithme utilisé. Cela correspond au pas d’observation utilisé. Remarque : ce n’est pas l’index d’itération courant d’algorithme même si cela coïncide pour des algorithmes non itératifs.
Exemple :
i = ADD.get("CurrentStepNumber")[-1]
- ForecastState
Liste de vecteurs. Chaque élément est un vecteur d’état (ou un ensemble de vecteurs d’états selon l’algorithme) prévu(s) par le modèle au cours du déroulement itératif temporel de l’algorithme utilisé.
Exemple :
Xf = ADD.get("ForecastState")[:]
- Innovation
Liste de vecteurs. Chaque élément est un vecteur d’innovation, qui est en statique l’écart de l’optimum à l’ébauche, et en dynamique l’incrément d’évolution.
Exemple :
d = ADD.get("Innovation")[-1]
- InnovationAtCurrentAnalysis
Liste de vecteurs. Chaque élément est un vecteur d’innovation à l’état analysé courant. Cette quantité est identique au vecteur d’innovation à l’état analysé dans le cas d’une assimilation mono-état.
Exemple :
ds = ADD.get("InnovationAtCurrentAnalysis")[-1]
- MahalanobisConsistency
Liste de valeurs. Chaque élément est une valeur de l’indicateur de qualité de Mahalanobis.
Exemple :
m = ADD.get("MahalanobisConsistency")[-1]
- OMA
Liste de vecteurs. Chaque élément est un vecteur d’écart entre l’observation et l’état optimal dans l’espace des observations.
Exemple :
oma = ADD.get("OMA")[-1]
- OMB
Liste de vecteurs. Chaque élément est un vecteur d’écart entre l’observation et l’état d’ébauche dans l’espace des observations.
Exemple :
omb = ADD.get("OMB")[-1]
- SampledStateForQuantiles
Liste de séries de vecteurs. Chaque élément est une série de vecteurs d’état colonnes, généré pour estimer par simulation et/ou observation les valeurs de quantiles requis par l’utilisateur. Il y a autant d’états que le nombre d’échantillons requis pour cette estimation de quantiles.
Exemple :
Xq = ADD.get("SampledStateForQuantiles")[:]
- SigmaBck2
Liste de valeurs. Chaque élément est une valeur de l’indicateur de qualité
de la partie ébauche.
Exemple :
sb2 = ADD.get("SigmaBck")[-1]
- SigmaObs2
Liste de valeurs. Chaque élément est une valeur de l’indicateur de qualité
de la partie observation.
Exemple :
so2 = ADD.get("SigmaObs")[-1]
- SimulatedObservationAtBackground
Liste de vecteurs. Chaque élément est un vecteur d’observation simulé par l’opérateur d’observation à partir de l’ébauche
. C’est la prévision à partir de l’ébauche, elle est parfois appellée « Dry ».
Exemple :
hxb = ADD.get("SimulatedObservationAtBackground")[-1]
- SimulatedObservationAtCurrentOptimum
Liste de vecteurs. Chaque élément est un vecteur d’observation simulé par l’opérateur d’observation à partir de l’état optimal au pas de temps courant au cours du déroulement de l’algorithme d’optimisation, c’est-à-dire dans l’espace des observations.
Exemple :
hxo = ADD.get("SimulatedObservationAtCurrentOptimum")[-1]
- SimulatedObservationAtCurrentState
Liste de vecteurs. Chaque élément est un vecteur d’observation simulé par l’opérateur d’observation à partir de l’état courant, c’est-à-dire dans l’espace des observations.
Exemple :
hxs = ADD.get("SimulatedObservationAtCurrentState")[-1]
- SimulatedObservationAtOptimum
Liste de vecteurs. Chaque élément est un vecteur d’observation obtenu par l’opérateur d’observation à partir de la simulation d’analyse ou d’état optimal
. C’est l’observation de la prévision à partir de l’analyse ou de l’état optimal, et elle est parfois appellée « Forecast ».
Exemple :
hxa = ADD.get("SimulatedObservationAtOptimum")[-1]
- SimulationQuantiles
Liste de séries de vecteurs. Chaque élément est une série de vecteurs colonnes d’observation, correspondant, pour un quantile particulier requis par l’utilisateur, à l’état observé qui réalise le quantile demandé. Chaque vecteur colonne d’observation est restitué dans le même ordre que les valeurs de quantiles requis par l’utilisateur.
Exemple :
sQuantiles = ADD.get("SimulationQuantiles")[:]
Exemples d’utilisation en Python (TUI)¶
Voici un exemple très simple d’usage de l’algorithme proposé et de ses paramètres, écrit en [DocR] Interface textuelle pour l’utilisateur (TUI/API), et dont les informations indiquées en entrée permettent de définir un cas équivalent en interface graphique.
Cet exemple décrit l’interpolation entre deux états physiques. Ces deux champs
vectoriels, de discrétisation identique, sont l’observation
et l’état d’ébauche a priori
. Les
confiances dans les erreurs sur les deux informations sont considérées comme
identiques. Le modèle
observe complètement le champ disponible, c’est
un opérateur de sélection matriciel.
Le champ interpolé résultant est simplement le « milieu » entre les deux champs, avec une confiance améliorée sur les erreurs.
# -*- coding: utf-8 -*-
#
from numpy import array, ravel
from adao import adaoBuilder
case = adaoBuilder.New('')
case.setBackground( Vector = array([0., 1., 2.]), Stored=True )
case.setBackgroundError( ScalarSparseMatrix = 1. )
case.setObservation( Vector = array([10., 11., 12.]), Stored=True )
case.setObservationError( ScalarSparseMatrix = 1. )
case.setObservationOperator( Matrix = array([[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]]), )
case.setAlgorithmParameters(
Algorithm='ExtendedBlue',
Parameters={
'StoreSupplementaryCalculations': [
'APosterioriCovariance',
],
},
)
case.execute()
#
#-------------------------------------------------------------------------------
#
print("Interpolation entre deux états vectoriels, observation et ébauche")
print("-----------------------------------------------------------------")
print("")
print("Vecteur d'observation.........:", ravel(case.get('Observation')))
print("État d'ébauche a priori.......:", ravel(case.get('Background')))
print("")
print("État théorique attendu........:", ravel([5., 6., 7.]))
print("")
print("État obtenu par interpolation.:", ravel(case.get('Analysis')[-1]))
print("Covariance a posteriori.......:\n", case.get('APosterioriCovariance')[-1])
Le résultat de son exécution est le suivant :
Interpolation entre deux états vectoriels, observation et ébauche
-----------------------------------------------------------------
Vecteur d'observation.........: [10. 11. 12.]
État d'ébauche a priori.......: [0. 1. 2.]
État théorique attendu........: [5. 6. 7.]
État obtenu par interpolation.: [5. 6. 7.]
Covariance a posteriori.......:
[[0.5 0. 0. ]
[0. 0.5 0. ]
[0. 0. 0.5]]
Voir aussi¶
Références vers d’autres sections :