13.1. Algorithme de calcul « 3DVAR »

Description

Cet algorithme réalise une estimation d’état par minimisation variationnelle de la fonctionnelle J d’écart classique en assimilation de données statique:

J(\mathbf{x})=(\mathbf{x}-\mathbf{x}^b)^T.\mathbf{B}^{-1}.(\mathbf{x}-\mathbf{x}^b)+(\mathbf{y}^o-H(\mathbf{x}))^T.\mathbf{R}^{-1}.(\mathbf{y}^o-H(\mathbf{x}))

qui est usuellement désignée comme la fonctionnelle « 3D-Var » (voir par exemple [Talagrand97]). Les dénominations « 3D-Var », « 3D-VAR » et « 3DVAR » sont équivalentes.

Il existe diverses variantes de cet algorithme. On propose ici les formulations stables et robustes suivantes :

  • « 3DVAR » (3D Variational analysis, voir [Lorenc86], [LeDimet86], [Talagrand97]), algorithme classique d’origine, extrêmement robuste, opérant dans l’espace du modèle,
  • « 3DVAR-VAN » (3D Variational Analysis with No inversion of B, voir [Lorenc88]), algorithme similaire, opérant dans l’espace du modèle, permettant d’éviter l’inversion de la matrice de covariance B (sauf dans le cas où il y des bornes),
  • « 3DVAR-Incr » (Incremental 3DVAR, voir [Courtier94]), algorithme plus économique que les précédents, impliquant une approximation des opérateurs non-linéaires,
  • « 3DVAR-PSAS » (Physical-space Statistical Analysis Scheme for 3DVAR, voir [Courtier97], [Cohn98]), algorithme parfois plus économique car opérant dans l’espace des observations, impliquant une approximation des opérateurs non-linéaires, ne permettant pas la prise en compte de bornes.

On recommande fortement d’utiliser le « 3DVAR » d’origine. Les algorithmes « 3DVAR » et « 3DVAR-Incr » (et pas les autres) permettent explicitement la modification du point initial de leur minimisation, même si ce n’est pas recommandé.

Cet algorithme est naturellement écrit pour une estimation unique, sans notion dynamique ou itérative (il n’y a donc pas besoin dans ce cas d’opérateur d’évolution incrémentale, ni de covariance d’erreurs d’évolution). Dans ADAO, il peut aussi être utilisé sur une succession d’observations, plaçant alors l’estimation dans un cadre récursif similaire à un Algorithme de calcul « KalmanFilter ». Une estimation standard est effectuée à chaque pas d’observation sur l’état prévu par le modèle d’évolution incrémentale, sachant que la covariance d’erreur d’état reste la covariance d’ébauche initialement fournie par l’utilisateur. Pour être explicite, contrairement aux filtres de type Kalman, la covariance d’erreurs sur les états n’est pas remise à jour.

Une extension du 3DVAR, couplant en parallèle une méthode 3DVAR avec un filtre de Kalman d’ensemble, permet d’améliorer l’estimation des covariances d’erreurs a posteriori. On atteint cette extension en utilisant le variant « E3DVAR » de l’algorithme de filtrage Algorithme de calcul « EnsembleKalmanFilter ».

Commandes requises et optionnelles

Les commandes générales requises, disponibles en édition dans l’interface graphique ou textuelle, sont les suivantes :

Background
Vecteur. La variable désigne le vecteur d’ébauche ou d’initialisation, usuellement noté \mathbf{x}^b. Sa valeur est définie comme un objet de type « Vector » ou « VectorSerie ». Sa disponibilité en sortie est conditionnée par le booléen « Stored » associé en entrée.
BackgroundError
Matrice. La variable désigne la matrice de covariance des erreurs d’ébauche, usuellement notée \mathbf{B}. Sa valeur est définie comme un objet de type « Matrix », de type « ScalarSparseMatrix », ou de type « DiagonalSparseMatrix », comme décrit en détail dans la section Conditions requises pour décrire des matrices de covariance. Sa disponibilité en sortie est conditionnée par le booléen « Stored » associé en entrée.
Observation
Liste de vecteurs. La variable désigne le vecteur d’observation utilisé en assimilation de données ou en optimisation, et usuellement noté \mathbf{y}^o. Sa valeur est définie comme un objet de type « Vector » si c’est une unique observation (temporelle ou pas) ou « VectorSerie » si c’est une succession d’observations. Sa disponibilité en sortie est conditionnée par le booléen « Stored » associé en entrée.
ObservationError
Matrice. La variable désigne la matrice de covariance des erreurs a priori d’ébauche, usuellement notée \mathbf{R}. Cette matrice est définie comme un objet de type « Matrix », de type « ScalarSparseMatrix », ou de type « DiagonalSparseMatrix », comme décrit en détail dans la section Conditions requises pour décrire des matrices de covariance. Sa disponibilité en sortie est conditionnée par le booléen « Stored » associé en entrée.
ObservationOperator
Opérateur. La variable désigne l’opérateur d’observation, usuellement noté H, qui transforme les paramètres d’entrée \mathbf{x} en résultats \mathbf{y} qui sont à comparer aux observations \mathbf{y}^o. Sa valeur est définie comme un objet de type « Function » ou de type « Matrix ». Dans le cas du type « Function », différentes formes fonctionnelles peuvent être utilisées, comme décrit dans la section Conditions requises pour les fonctions décrivant un opérateur. Si un contrôle U est inclus dans le modèle d’observation, l’opérateur doit être appliqué à une paire (X,U).

Les commandes optionnelles générales, disponibles en édition dans l’interface graphique ou textuelle, sont indiquées dans la Liste des commandes et mots-clés pour un cas d’assimilation de données ou d’optimisation. De plus, les paramètres de la commande « AlgorithmParameters » permettent d’indiquer les options particulières, décrites ci-après, de l’algorithme. On se reportera à la Description des options d’un algorithme par « AlgorithmParameters » pour le bon usage de cette commande.

Les options sont les suivantes :

Bounds

Liste de paires de valeurs réelles. Cette clé permet de définir des paires de bornes supérieure et inférieure pour chaque variable d’état optimisée. Les bornes doivent être données par une liste de liste de paires de bornes inférieure/supérieure pour chaque variable, avec une valeur None chaque fois qu’il n’y a pas de borne. Les bornes peuvent toujours être spécifiées, mais seuls les optimiseurs sous contraintes les prennent en compte.

Exemple : {"Bounds":[[2.,5.],[1.e-2,10.],[-30.,None],[None,None]]}

CostDecrementTolerance

Valeur réelle. Cette clé indique une valeur limite, conduisant à arrêter le processus itératif d’optimisation lorsque la fonction coût décroît moins que cette tolérance au dernier pas. La valeur par défaut est de 1.e-7, et il est recommandé de l’adapter aux besoins pour des problèmes réels. On peut se reporter à la partie décrivant les manières de Contrôler la convergence pour des cas de calculs et algorithmes itératifs pour des recommandations plus détaillées.

Exemple : {"CostDecrementTolerance":1.e-7}

EstimationOf

Nom prédéfini. Cette clé permet de choisir le type d’estimation à réaliser. Cela peut être soit une estimation de l’état, avec la valeur « State », ou une estimation de paramètres, avec la valeur « Parameters ». Le choix par défaut est « Parameters ».

Exemple : {"EstimationOf":"Parameters"}

GradientNormTolerance

Valeur réelle. Cette clé indique une valeur limite, conduisant à arrêter le processus itératif d’optimisation lorsque la norme du gradient est en dessous de cette limite. C’est utilisé uniquement par les optimiseurs sans contraintes. Le défaut est 1.e-5 et il n’est pas recommandé de le changer.

Exemple : {"GradientNormTolerance":1.e-5}

InitializationPoint

Vecteur. La variable désigne un vecteur à utiliser comme l’état initial autour duquel démarre un algorithme itératif. Par défaut, cet état initial n’a pas besoin d’être fourni et il est égal à l’ébauche \mathbf{x}^b. Sa valeur doit permettre de construire un vecteur de taille identique à l’ébauche. Dans le cas où il est fourni, il ne remplace l’ébauche que pour l’initialisation.

Exemple : {"InitializationPoint":[1, 2, 3, 4, 5]}

MaximumNumberOfIterations

Valeur entière. Cette clé indique le nombre maximum d’itérations internes possibles en optimisation itérative. Le défaut est 15000, qui est très similaire à une absence de limite sur les itérations. Il est ainsi recommandé d’adapter ce paramètre aux besoins pour des problèmes réels. Pour certains optimiseurs, le nombre de pas effectif d’arrêt peut être légèrement différent de la limite à cause d’exigences de contrôle interne de l’algorithme. On peut se reporter à la partie décrivant les manières de Contrôler la convergence pour des cas de calculs et algorithmes itératifs pour des recommandations plus détaillées.

Exemple : {"MaximumNumberOfIterations":100}

Minimizer

Nom prédéfini. Cette clé permet de changer le minimiseur pour l’optimiseur. Le choix par défaut est « LBFGSB », et les choix possibles sont « LBFGSB » (minimisation non linéaire sous contraintes, voir [Byrd95], [Morales11], [Zhu97]), « TNC » (minimisation non linéaire sous contraintes), « CG » (minimisation non linéaire sans contraintes), « BFGS » (minimisation non linéaire sans contraintes), « NCG » (minimisation de type gradient conjugué de Newton). Il est fortement conseillé de conserver la valeur par défaut.

Exemple : {"Minimizer":"LBFGSB"}

NumberOfSamplesForQuantiles

Valeur entière. Cette clé indique le nombre de simulations effectuées pour estimer les quantiles. Cette option n’est utile que si le calcul supplémentaire « SimulationQuantiles » a été choisi. Le défaut est 100, ce qui suffit souvent pour une estimation correcte de quantiles courants à 5%, 10%, 90% ou 95%.

Exemple : {"NumberOfSamplesForQuantiles":100}

ProjectedGradientTolerance

Valeur réelle. Cette clé indique une valeur limite, conduisant à arrêter le processus itératif d’optimisation lorsque toutes les composantes du gradient projeté sont en-dessous de cette limite. C’est utilisé uniquement par les optimiseurs sous contraintes. Le défaut est -1, qui désigne le défaut interne de chaque optimiseur (usuellement 1.e-5), et il n’est pas recommandé de le changer.

Exemple : {"ProjectedGradientTolerance":-1}

Quantiles

Liste de valeurs réelles. Cette liste indique les valeurs de quantile, entre 0 et 1, à estimer par simulation autour de l’état optimal. L’échantillonnage utilise des tirages aléatoires gaussiens multivariés, dirigés par la matrice de covariance a posteriori. Cette option n’est utile que si le calcul supplémentaire « SimulationQuantiles » a été choisi. La valeur par défaut est une liste vide.

Exemple : {"Quantiles":[0.1,0.9]}

SetSeed

Valeur entière. Cette clé permet de donner un nombre entier pour fixer la graine du générateur aléatoire utilisé dans l’algorithme. Par défaut, la graine est laissée non initialisée, et elle utilise ainsi l’initialisation par défaut de l’ordinateur, qui varie donc à chaque étude. Pour assurer la reproductibilité de résultats impliquant des tirages aléatoires, il est fortement conseiller d’initialiser la graine. Une valeur simple est par exemple 123456789. Il est conseillé de mettre un entier à plus de 6 ou 7 chiffres pour bien initialiser le générateur aléatoire.

Exemple : {"SetSeed":123456789}

SimulationForQuantiles

Nom prédéfini. Cette clé indique le type de simulation, linéaire (avec l’opérateur d’observation tangent appliqué sur des incréments de perturbations autour de l’état optimal) ou non-linéaire (avec l’opérateur d’observation standard appliqué aux états perturbés), que l’on veut faire pour chaque perturbation. Cela change essentiellement le temps de chaque simulation élémentaire, usuellement plus long en non-linéaire qu’en linéaire. Cette option n’est utile que si le calcul supplémentaire « SimulationQuantiles » a été choisi. La valeur par défaut est « Linear », et les choix possibles sont « Linear » et « NonLinear ».

Exemple : {"SimulationForQuantiles":"Linear"}

StateBoundsForQuantiles

Liste de paires de valeurs réelles. Cette clé permet de définir des paires de bornes supérieure et inférieure pour chaque variable d’état utilisée dans la simulation des quantiles. Les bornes doivent être données par une liste de liste de paires de bornes inférieure/supérieure pour chaque variable, avec une valeur None chaque fois qu’il n’y a pas de borne.

En l’absence de définition de ces bornes pour la simulation des quantiles et si des bornes d’optimisation sont définies, ce sont ces dernières qui sont utilisées pour la simulation des quantiles. Si ces bornes pour la simulation des quantiles sont définies, elles sont utilisées quelles que soient les bornes d’optimisation définies. Si cette variable est définie à None, alors aucune borne n’est utilisée pour les états utilisés dans la simulation des quantiles quelles que soient les bornes d’optimisation définies.

Exemple : {"StateBoundsForQuantiles":[[2.,5.],[1.e-2,10.],[-30.,None],[None,None]]}

StoreSupplementaryCalculations

Liste de noms. Cette liste indique les noms des variables supplémentaires, qui peuvent être disponibles au cours du déroulement ou à la fin de l’algorithme, si elles sont initialement demandées par l’utilisateur. Leur disponibilité implique, potentiellement, des calculs ou du stockage coûteux. La valeur par défaut est donc une liste vide, aucune de ces variables n’étant calculée et stockée par défaut (sauf les variables inconditionnelles). Les noms possibles pour les variables supplémentaires sont dans la liste suivante (la description détaillée de chaque variable nommée est donnée dans la suite de cette documentation par algorithme spécifique, dans la sous-partie « Informations et variables disponibles à la fin de l’algorithme ») : [ « Analysis », « APosterioriCorrelations », « APosterioriCovariance », « APosterioriStandardDeviations », « APosterioriVariances », « BMA », « CostFunctionJ », « CostFunctionJAtCurrentOptimum », « CostFunctionJb », « CostFunctionJbAtCurrentOptimum », « CostFunctionJo », « CostFunctionJoAtCurrentOptimum », « CurrentIterationNumber », « CurrentOptimum », « CurrentState », « CurrentStepNumber », « ForecastState », « IndexOfOptimum », « Innovation », « InnovationAtCurrentAnalysis », « InnovationAtCurrentState », « JacobianMatrixAtBackground », « JacobianMatrixAtOptimum », « KalmanGainAtOptimum », « MahalanobisConsistency », « OMA », « OMB », « SampledStateForQuantiles », « SigmaObs2 », « SimulatedObservationAtBackground », « SimulatedObservationAtCurrentOptimum », « SimulatedObservationAtCurrentState », « SimulatedObservationAtOptimum », « SimulationQuantiles », ].

Exemple : {"StoreSupplementaryCalculations":["BMA", "CurrentState"]}

Variant

Nom prédéfini. Cette clé permet de choisir l’une des variantes possibles pour l’algorithme principal. La variante par défaut est le « 3DVAR » d’origine, et les choix possibles sont « 3DVAR » (3D Variational analysis classique), « 3DVAR-VAN » (3D Variational Analysis with No inversion of B), « 3DVAR-Incr » (Incremental 3DVAR), « 3DVAR-PSAS » (Physical-space Statistical Analysis Scheme for 3DVAR), Il est fortement recommandé de conserver la valeur par défaut.

Exemple : {"Variant":"3DVAR"}

Informations et variables disponibles à la fin de l’algorithme

En sortie, après exécution de l’algorithme, on dispose d’informations et de variables issues du calcul. La description des Variables et informations disponibles en sortie indique la manière de les obtenir par la méthode nommée get, de la variable « ADD » du post-processing en interface graphique, ou du cas en interface textuelle. Les variables d’entrée, mises à disposition de l’utilisateur en sortie pour faciliter l’écriture des procédures de post-processing, sont décrites dans l”Inventaire des informations potentiellement disponibles en sortie.

Sorties permanentes (non conditionnelles)

Les sorties non conditionnelles de l’algorithme sont les suivantes :

Analysis

Liste de vecteurs. Chaque élément de cette variable est un état optimal \mathbf{x}^* en optimisation ou une analyse \mathbf{x}^a en assimilation de données.

Exemple : Xa = ADD.get("Analysis")[-1]

CostFunctionJ

Liste de valeurs. Chaque élément est une valeur de fonctionnelle d’écart J choisie.

Exemple : J = ADD.get("CostFunctionJ")[:]

CostFunctionJb

Liste de valeurs. Chaque élément est une valeur de fonctionnelle d’écart J^b, c’est-à-dire de la partie écart à l’ébauche. Si cette partie n’existe pas dans la fonctionnelle, sa valeur est nulle.

Exemple : Jb = ADD.get("CostFunctionJb")[:]

CostFunctionJo

Liste de valeurs. Chaque élément est une valeur de fonctionnelle d’écart J^o, c’est-à-dire de la partie écart à l’observation.

Exemple : Jo = ADD.get("CostFunctionJo")[:]

Ensemble des sorties à la demande (conditionnelles ou non)

L’ensemble des sorties (conditionnelles ou non) de l’algorithme, classées par ordre alphabétique, est le suivant :

Analysis

Liste de vecteurs. Chaque élément de cette variable est un état optimal \mathbf{x}^* en optimisation ou une analyse \mathbf{x}^a en assimilation de données.

Exemple : Xa = ADD.get("Analysis")[-1]

APosterioriCorrelations

Liste de matrices. Chaque élément est une matrice de corrélations des erreurs a posteriori de l’état optimal, issue de la matrice \mathbf{A} des covariances. Pour en disposer, il faut avoir en même temps demandé le calcul de ces covariances d’erreurs a posteriori.

Exemple : C = ADD.get("APosterioriCorrelations")[-1]

APosterioriCovariance

Liste de matrices. Chaque élément est une matrice \mathbf{A} de covariances des erreurs a posteriori de l’état optimal.

Exemple : A = ADD.get("APosterioriCovariance")[-1]

APosterioriStandardDeviations

Liste de matrices. Chaque élément est une matrice diagonale d’écarts-types des erreurs a posteriori de l’état optimal, issue de la matrice \mathbf{A} des covariances. Pour en disposer, il faut avoir en même temps demandé le calcul de ces covariances d’erreurs a posteriori.

Exemple : S = ADD.get("APosterioriStandardDeviations")[-1]

APosterioriVariances

Liste de matrices. Chaque élément est une matrice diagonale de variances des erreurs a posteriori de l’état optimal, issue de la matrice \mathbf{A} des covariances. Pour en disposer, il faut avoir en même temps demandé le calcul de ces covariances d’erreurs a posteriori.

Exemple : V = ADD.get("APosterioriVariances")[-1]

BMA

Liste de vecteurs. Chaque élément est un vecteur d’écart entre l’ébauche et l’état optimal.

Exemple : bma = ADD.get("BMA")[-1]

CostFunctionJ

Liste de valeurs. Chaque élément est une valeur de fonctionnelle d’écart J choisie.

Exemple : J = ADD.get("CostFunctionJ")[:]

CostFunctionJAtCurrentOptimum

Liste de valeurs. Chaque élément est une valeur de fonctionnelle d’écart J. A chaque pas, la valeur correspond à l’état optimal trouvé depuis le début.

Exemple : JACO = ADD.get("CostFunctionJAtCurrentOptimum")[:]

CostFunctionJb

Liste de valeurs. Chaque élément est une valeur de fonctionnelle d’écart J^b, c’est-à-dire de la partie écart à l’ébauche. Si cette partie n’existe pas dans la fonctionnelle, sa valeur est nulle.

Exemple : Jb = ADD.get("CostFunctionJb")[:]

CostFunctionJbAtCurrentOptimum

Liste de valeurs. Chaque élément est une valeur de fonctionnelle d’écart J^b, c’est-à-dire de la partie écart à l’ébauche. A chaque pas, la valeur correspond à l’état optimal trouvé depuis le début. Si cette partie n’existe pas dans la fonctionnelle, sa valeur est nulle.

Exemple : JbACO = ADD.get("CostFunctionJbAtCurrentOptimum")[:]

CostFunctionJo

Liste de valeurs. Chaque élément est une valeur de fonctionnelle d’écart J^o, c’est-à-dire de la partie écart à l’observation.

Exemple : Jo = ADD.get("CostFunctionJo")[:]

CostFunctionJoAtCurrentOptimum

Liste de valeurs. Chaque élément est une valeur de fonctionnelle d’écart J^o, c’est-à-dire de la partie écart à l’observation. A chaque pas, la valeur correspond à l’état optimal trouvé depuis le début.

Exemple : JoACO = ADD.get("CostFunctionJoAtCurrentOptimum")[:]

CurrentIterationNumber

Liste d’entiers. Chaque élément est l’index d’itération courant au cours du déroulement itératif de l’algorithme utilisé. Il y a une valeur d’index d’itération par pas d’assimilation correspondant à un état observé.

Exemple : i = ADD.get("CurrentIterationNumber")[-1]

CurrentOptimum

Liste de vecteurs. Chaque élément est le vecteur d’état optimal au pas de temps courant au cours du déroulement itératif de l’algorithme d’optimisation utilisé. Ce n’est pas nécessairement le dernier état.

Exemple : Xo = ADD.get("CurrentOptimum")[:]

CurrentState

Liste de vecteurs. Chaque élément est un vecteur d’état courant utilisé au cours du déroulement itératif de l’algorithme utilisé.

Exemple : Xs = ADD.get("CurrentState")[:]

CurrentStepNumber

Liste d’entiers. Chaque élément est l’index du pas courant au cours du déroulement itératif, piloté par la série des observations, de l’algorithme utilisé. Cela correspond au pas d’observation utilisé. Remarque : ce n’est pas l’index d’itération courant d’algorithme même si cela coïncide pour des algorithmes non itératifs.

Exemple : i = ADD.get("CurrentStepNumber")[-1]

ForecastState

Liste de vecteurs. Chaque élément est un vecteur d’état (ou un ensemble de vecteurs d’états selon l’algorithme) prévu(s) par le modèle au cours du déroulement itératif temporel de l’algorithme utilisé.

Exemple : Xf = ADD.get("ForecastState")[:]

IndexOfOptimum

Liste d’entiers. Chaque élément est l’index d’itération de l’optimum obtenu au cours du déroulement itératif de l’algorithme d’optimisation utilisé. Ce n’est pas nécessairement le numéro de la dernière itération.

Exemple : i = ADD.get("IndexOfOptimum")[-1]

Innovation

Liste de vecteurs. Chaque élément est un vecteur d’innovation, qui est en statique l’écart de l’optimum à l’ébauche, et en dynamique l’incrément d’évolution.

Exemple : d = ADD.get("Innovation")[-1]

InnovationAtCurrentAnalysis

Liste de vecteurs. Chaque élément est un vecteur d’innovation à l’état analysé courant. Cette quantité est identique au vecteur d’innovation à l’état analysé dans le cas d’une assimilation mono-état.

Exemple : ds = ADD.get("InnovationAtCurrentAnalysis")[-1]

InnovationAtCurrentState

Liste de vecteurs. Chaque élément est un vecteur d’innovation à l’état courant avant analyse.

Exemple : ds = ADD.get("InnovationAtCurrentState")[-1]

JacobianMatrixAtBackground

Liste de matrices. Chaque élément est une matrice jacobienne de dérivées partielles de la sortie de l’opérateur d’observation par rapport aux paramètres d’entrée, une colonne de dérivées par paramètre. Le calcul est effectué à l’état initial.

Exemple: GradH = ADD.get("JacobianMatrixAtBackground")[-1]

JacobianMatrixAtOptimum

Liste de matrices. Chaque élément est une matrice jacobienne de dérivées partielles de la sortie de l’opérateur d’observation par rapport aux paramètres d’entrée, une colonne de dérivées par paramètre. Le calcul est effectué à l’état optimal.

Exemple: GradH = ADD.get("JacobianMatrixAtOptimum")[-1]

KalmanGainAtOptimum

Liste de matrices. Chaque élément est une matrice de gain de Kalman standard, évaluée à l’aide de l’opérateur d’observation linéarisé. Le calcul est effectué à l’état optimal.

Exemple: KG = ADD.get("KalmanGainAtOptimum")[-1]

MahalanobisConsistency

Liste de valeurs. Chaque élément est une valeur de l’indicateur de qualité de Mahalanobis.

Exemple : m = ADD.get("MahalanobisConsistency")[-1]

OMA

Liste de vecteurs. Chaque élément est un vecteur d’écart entre l’observation et l’état optimal dans l’espace des observations.

Exemple : oma = ADD.get("OMA")[-1]

OMB

Liste de vecteurs. Chaque élément est un vecteur d’écart entre l’observation et l’état d’ébauche dans l’espace des observations.

Exemple : omb = ADD.get("OMB")[-1]

SampledStateForQuantiles

Liste de séries de vecteurs. Chaque élément est une série de vecteurs d’état colonnes, généré pour estimer par simulation et/ou observation les valeurs de quantiles requis par l’utilisateur. Il y a autant d’états que le nombre d’échantillons requis pour cette estimation de quantiles.

Exemple : Xq = ADD.get("SampledStateForQuantiles")[:]

SigmaObs2

Liste de valeurs. Chaque élément est une valeur de l’indicateur de qualité (\sigma^o)^2 de la partie observation.

Exemple : so2 = ADD.get("SigmaObs")[-1]

SimulatedObservationAtBackground

Liste de vecteurs. Chaque élément est un vecteur d’observation simulé par l’opérateur d’observation à partir de l’ébauche \mathbf{x}^b. C’est la prévision à partir de l’ébauche, elle est parfois appellée « Dry ».

Exemple : hxb = ADD.get("SimulatedObservationAtBackground")[-1]

SimulatedObservationAtCurrentOptimum

Liste de vecteurs. Chaque élément est un vecteur d’observation simulé par l’opérateur d’observation à partir de l’état optimal au pas de temps courant au cours du déroulement de l’algorithme d’optimisation, c’est-à-dire dans l’espace des observations.

Exemple : hxo = ADD.get("SimulatedObservationAtCurrentOptimum")[-1]

SimulatedObservationAtCurrentState

Liste de vecteurs. Chaque élément est un vecteur d’observation simulé par l’opérateur d’observation à partir de l’état courant, c’est-à-dire dans l’espace des observations.

Exemple : hxs = ADD.get("SimulatedObservationAtCurrentState")[-1]

SimulatedObservationAtOptimum

Liste de vecteurs. Chaque élément est un vecteur d’observation obtenu par l’opérateur d’observation à partir de la simulation d’analyse ou d’état optimal \mathbf{x}^a. C’est l’observation de la prévision à partir de l’analyse ou de l’état optimal, et elle est parfois appellée « Forecast ».

Exemple : hxa = ADD.get("SimulatedObservationAtOptimum")[-1]

SimulationQuantiles

Liste de séries de vecteurs. Chaque élément est une série de vecteurs colonnes d’observation, correspondant, pour un quantile particulier requis par l’utilisateur, à l’état observé qui réalise le quantile demandé. Chaque vecteur colonne d’observation est restitué dans le même ordre que les valeurs de quantiles requis par l’utilisateur.

Exemple : sQuantiles = ADD.get("SimulationQuantiles")[:]

Exemples d’utilisation en Python (TUI)

Voici un exemple très simple d’usage de l’algorithme proposé et de ses paramètres, écrit en [DocR] Interface textuelle pour l’utilisateur (TUI/API), et dont les informations indiquées en entrée permettent de définir un cas équivalent en interface graphique.

Cet exemple décrit le recalage des paramètres \mathbf{x} d’un modèle d’observation H quadratique. Ce modèle est représenté ici comme une fonction nommée QuadFunction. Cette fonction accepte en entrée le vecteur de coefficients \mathbf{x}, et fournit en sortie le vecteur \mathbf{y} d’évaluation du modèle quadratique aux points de contrôle internes prédéfinis dans le modèle. Le calage s’effectue sur la base d’un jeu initial de coefficients (état d’ébauche désigné par Xb dans l’exemple), et avec l’information \mathbf{y}^o (désignée par Yobs dans l’exemple) de 5 mesures obtenues à ces mêmes points de contrôle internes. On se place en expériences jumelles (voir Pour tester une chaîne d’assimilation de données : les expériences jumelles) et les mesures sont parfaites. On privilégie les observations au détriment de l’ébauche par l’indication d’une très importante variance d’erreur d’ébauche, ici de 10^{6}.

L’ajustement s’effectue en affichant des résultats intermédiaires lors de l’optimisation itérative.

# -*- coding: utf-8 -*-
#
from numpy import array, ravel
def QuadFunction( coefficients ):
    """
    Simulation quadratique aux points x : y = a x^2 + b x + c
    """
    a, b, c = list(ravel(coefficients))
    x_points = (-5, 0, 1, 3, 10)
    y_points = []
    for x in x_points:
        y_points.append( a*x*x + b*x + c )
    return array(y_points)
#
Xb   = array([1., 1., 1.])
Yobs = array([57, 2, 3, 17, 192])
#
print("Résolution du problème de calage")
print("--------------------------------")
print("")
from adao import adaoBuilder
case = adaoBuilder.New('')
case.setBackground( Vector = Xb, Stored=True )
case.setBackgroundError( ScalarSparseMatrix = 1.e6 )
case.setObservation( Vector = Yobs, Stored=True )
case.setObservationError( ScalarSparseMatrix = 1. )
case.setObservationOperator( OneFunction = QuadFunction )
case.setAlgorithmParameters(
    Algorithm='3DVAR',
    Parameters={
        'MaximumNumberOfIterations': 100,
        'StoreSupplementaryCalculations': [
            'CurrentState',
            ],
        },
    )
case.setObserver(
    Info="  État intermédiaire en itération courante :",
    Template='ValuePrinter',
    Variable='CurrentState',
    )
case.execute()
print("")
#
#-------------------------------------------------------------------------------
#
print("Calage de %i coefficients pour une forme quadratique 1D sur %i mesures"%(
    len(case.get('Background')),
    len(case.get('Observation')),
    ))
print("--------------------------------------------------------------------")
print("")
print("Vecteur d'observation.............:", ravel(case.get('Observation')))
print("État d'ébauche a priori...........:", ravel(case.get('Background')))
print("")
print("Coefficients théoriques attendus..:", ravel((2,-1,2)))
print("")
print("Nombre d'itérations...............:", len(case.get('CurrentState')))
print("Nombre de simulations.............:", len(case.get('CurrentState'))*4)
print("Coefficients résultants du calage.:", ravel(case.get('Analysis')[-1]))
#
Xa = case.get('Analysis')[-1]
import matplotlib.pyplot as plt
plt.rcParams['figure.figsize'] = (10, 4)
#
plt.figure()
plt.plot((-5,0,1,3,10),QuadFunction(Xb),'b-',label="Simulation à l'ébauche")
plt.plot((-5,0,1,3,10),Yobs,            'kX',label='Observation',markersize=10)
plt.plot((-5,0,1,3,10),QuadFunction(Xa),'r-',label="Simulation à l'optimum")
plt.legend()
plt.title('Calage de coefficients', fontweight='bold')
plt.xlabel('Coordonnée arbitraire')
plt.ylabel('Observations')
plt.savefig("simple_3DVAR.png")

Le résultat de son exécution est le suivant :

Résolution du problème de calage
--------------------------------

  État intermédiaire en itération courante : [1. 1. 1.]
  État intermédiaire en itération courante : [1.99739508 1.07086406 1.01346638]
  État intermédiaire en itération courante : [1.83891966 1.04815981 1.01208385]
  État intermédiaire en itération courante : [1.8390702  1.03667176 1.01284797]
  État intermédiaire en itération courante : [1.83967236 0.99071957 1.01590445]
  État intermédiaire en itération courante : [1.84208099 0.8069108  1.02813037]
  État intermédiaire en itération courante : [ 1.93711599 -0.56383145  1.12097995]
  État intermédiaire en itération courante : [ 1.99838848 -1.00480573  1.1563713 ]
  État intermédiaire en itération courante : [ 2.0135905  -1.04815933  1.16155285]
  État intermédiaire en itération courante : [ 2.01385679 -1.03874809  1.16129657]
  État intermédiaire en itération courante : [ 2.01377856 -1.03700044  1.16157611]
  État intermédiaire en itération courante : [ 2.01338902 -1.02943736  1.16528951]
  État intermédiaire en itération courante : [ 2.01265633 -1.0170847   1.17793974]
  État intermédiaire en itération courante : [ 2.0112487  -0.99745509  1.21485091]
  État intermédiaire en itération courante : [ 2.00863696 -0.96943284  1.30917045]
  État intermédiaire en itération courante : [ 2.00453385 -0.94011716  1.51021882]
  État intermédiaire en itération courante : [ 2.00013539 -0.93313893  1.80539433]
  État intermédiaire en itération courante : [ 1.95437244 -0.76890418  2.04566856]
  État intermédiaire en itération courante : [ 1.99797362 -0.92538074  1.81674451]
  État intermédiaire en itération courante : [ 1.99760514 -0.95929669  2.01402091]
  État intermédiaire en itération courante : [ 1.99917565 -0.99152672  2.03171791]
  État intermédiaire en itération courante : [ 1.99990376 -0.99963123  2.00671578]
  État intermédiaire en itération courante : [ 1.99999841 -1.00005285  2.00039699]
  État intermédiaire en itération courante : [ 2.00000014 -1.00000307  2.00000221]
  État intermédiaire en itération courante : [ 2.         -0.99999992  1.99999987]

Calage de 3 coefficients pour une forme quadratique 1D sur 5 mesures
--------------------------------------------------------------------

Vecteur d'observation.............: [ 57.   2.   3.  17. 192.]
État d'ébauche a priori...........: [1. 1. 1.]

Coefficients théoriques attendus..: [ 2 -1  2]

Nombre d'itérations...............: 25
Nombre de simulations.............: 100
Coefficients résultants du calage.: [ 2.         -0.99999992  1.99999987]

Les graphiques illustrant le résultat de son exécution sont les suivants :

_images/simple_3DVAR.png